Find the coefficient of $a^{4}$ in the product $(1+2 a)^{4}(2-a)^{5}$ using binomial theorem.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We first expand each of the factors of the given product using Binomial Theorem. We have

${(1 + 2a)^4} = {\,^4}{C_0} + {\,^4}{C_1}(2a) + {\,^4}{C_2}{(2a)^2} + {\,^4}{C_3}{(2a)^3} + {\,^4}{C_4}{(2a)^4}$

$=1+4(2 a)+6\left(4 a^{2}\right)+4\left(8 a^{3}\right)+16 a^{4}$

$=1+8 a+24 a^{2}+32 a^{3}+16 a^{4}$

and  ${(2 - a)^5} = {\,^5}{C_0}{(2)^5} - {\,^5}{C_1}{(2)^4}(a) + {\,^5}{C_2}{(2)^3}{(a)^2} - {\,^5}{C_3}{(2)^2}{(a)^3}$

                $ + {\,^5}{C_4}(2){(a)^4} - {\,^5}{C_5}{(a)^5}$

$=32-80 a+80 a^{2}-40 a^{3}+10 a^{4}-a^{5}$

Thus $(1+2 a)^{4}(2-a)^{5}$

$=\left(1+8 a+24 a^{2}+32 a^{3}+16 a^{4}\right)$

$\left(32-80 a+80 a^{2}-40 a^{3}+10 a^{4}-a^{5}\right)$

The complete multiplication of the two brackets need not be carried out. We write only those terms which involve $a^{4}$. This can be done if we note that ${a^r}.{a^{4 - r}} = {a^4}.$ The terms containing $a^{4}$ are

$1\left(10 a^{4}\right)+(8 a)\left(-40 a^{3}\right)+\left(24 a^{2}\right)\left(80 a^{2}\right)+\left(32 a^{3}\right)(-80 a)+\left(16 a^{4}\right)(32)=-438 a^{4}$

Similar Questions

The term independent of $x$ in the expansion ${\left( {{x^2} - \frac{1}{{3x}}} \right)^9}$ is

Coefficient of $t^{20}$ in the expansion of $(1 + t^2)^{10}(1 + t^{10})(1 + t^{20})$ is

If the coefficients of $x^7$ in $\left( ax ^2+\frac{1}{2 bx }\right)^{11}$ and $x ^{-7}$ in $\left(a x-\frac{1}{3 b x^2}\right)^{11}$ are equal, then

  • [JEE MAIN 2023]

If ${x^m}$occurs in the expansion of ${\left( {x + \frac{1}{{{x^2}}}} \right)^{2n}},$ then the coefficient of ${x^m}$ is

The coefficients of three consecutive terms of $(1+x)^{n+5}$ are in the ratio $5: 10: 14$. Then $n=$

  • [IIT 2013]