Find the coefficient of $a^{4}$ in the product $(1+2 a)^{4}(2-a)^{5}$ using binomial theorem.
We first expand each of the factors of the given product using Binomial Theorem. We have
${(1 + 2a)^4} = {\,^4}{C_0} + {\,^4}{C_1}(2a) + {\,^4}{C_2}{(2a)^2} + {\,^4}{C_3}{(2a)^3} + {\,^4}{C_4}{(2a)^4}$
$=1+4(2 a)+6\left(4 a^{2}\right)+4\left(8 a^{3}\right)+16 a^{4}$
$=1+8 a+24 a^{2}+32 a^{3}+16 a^{4}$
and ${(2 - a)^5} = {\,^5}{C_0}{(2)^5} - {\,^5}{C_1}{(2)^4}(a) + {\,^5}{C_2}{(2)^3}{(a)^2} - {\,^5}{C_3}{(2)^2}{(a)^3}$
$ + {\,^5}{C_4}(2){(a)^4} - {\,^5}{C_5}{(a)^5}$
$=32-80 a+80 a^{2}-40 a^{3}+10 a^{4}-a^{5}$
Thus $(1+2 a)^{4}(2-a)^{5}$
$=\left(1+8 a+24 a^{2}+32 a^{3}+16 a^{4}\right)$
$\left(32-80 a+80 a^{2}-40 a^{3}+10 a^{4}-a^{5}\right)$
The complete multiplication of the two brackets need not be carried out. We write only those terms which involve $a^{4}$. This can be done if we note that ${a^r}.{a^{4 - r}} = {a^4}.$ The terms containing $a^{4}$ are
$1\left(10 a^{4}\right)+(8 a)\left(-40 a^{3}\right)+\left(24 a^{2}\right)\left(80 a^{2}\right)+\left(32 a^{3}\right)(-80 a)+\left(16 a^{4}\right)(32)=-438 a^{4}$
Find the term independent of $x$ in the expansion of $\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{6}$
The term independent of $x$ in the expansion of ${\left( {2x + \frac{1}{{3x}}} \right)^6}$ is
Let ${\left( {x + 10} \right)^{50}} + {\left( {x - 10} \right)^{50}} = {a_0} + {a_1}x + {a_2}{x^2} + .... + {a_{50}}{x^{50}}$ , for $x \in R$; then $\frac{{{a_2}}}{{{a_0}}}$ is equal to
If the coefficients of $x^4, x^5$ and $x^6$ in the expansion of $(1+x)^n$ are in the arithmetic progression, then the maximum value of $n$ is :
The coefficients of three consecutive terms of $(1+x)^{n+5}$ are in the ratio $5: 10: 14$. Then $n=$