- Home
- Standard 11
- Mathematics
7.Binomial Theorem
medium
If $A$ and $B$ are the coefficients of ${x^n}$ in the expansions of ${(1 + x)^{2n}}$ and ${(1 + x)^{2n - 1}}$ respectively, then
A
$A = B$
B
$A = 2B$
C
$2A = B$
D
None of these
Solution
(b) $\frac{{{\rm{Coefficient}}\,{\rm{of}}\,{x^n}\,{\rm{in}}\,{\rm{expansion}}\,\,{\rm{of}}{{(1 + x)}^{2n}}}}{{{\rm{Coefficient}}\,{\rm{of}}\,{x^n}\,{\rm{in}}\,{\rm{expansion}}\,\,{\rm{of}}\,{{(1 + x)}^{2n – 1}}}}$
$ = \frac{{^{2n}{C_n}}}{{^{(2n – 1)}{C_n}}} = \frac{{(2n)!}}{{n!\,n!}} \times \frac{{(n – 1)!\,n!}}{{(2n – 1)!}}$
$ = \frac{{(2n)(2n – 1)!(n – 1)!}}{{n(n – 1)!\,\,(2n – 1)!}} = \frac{{2n}}{n} = 2:1$
==> $\frac{A}{B} = \frac{2}{1}$
==> $A = 2B$.
Standard 11
Mathematics