Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{4}+\frac{y^2} {25}=1$.
The given equation is $\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$ or $\frac{x^{2}}{2^{2}}+\frac{y^{2}}{5^{2}}=1$
Here, the denominator of $\frac{y^{2}}{25}$ is greater than the denominator of $\frac{x^{2}}{4}$
Therefore, the major axis is along the $y-$ axis, while the minor axis is along the $x-$ axis.
On comparing the given equation with $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1,$ we obtain $b=2$ and $a=5$
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{25-4}=\sqrt{21}$
Therefore,
The coordinates of the foci are $(0, \sqrt{21})$ and $(0,-\sqrt{21})$
The coordinates of the vertices are $(0,\,5)$ and $(0,\,-5)$
Length of major axis $=2 a=10$
Length of minor axis $=2 b =4$
Eccentricity, $e=\frac{c}{a}=\frac{\sqrt{21}}{5}$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 4}{5}=\frac{8}{5}$
The length of the latus rectum of the ellipse $\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{49}} = 1$
If the points of intersection of two distinct conics $x^2+y^2=4 b$ and $\frac{x^2}{16}+\frac{y^2}{b^2}=1$ lie on the curve $y^2=3 x^2$, then $3 \sqrt{3}$ times the area of the rectangle formed by the intersection points is............................
If the length of the latus rectum of an ellipse is $4\,units$ and the distance between a focus and its nearest vertex on the major axis is $\frac {3}{2}\,units$ , then its eccentricity is?
For an ellipse $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$ with vertices $A$ and $ A', $ tangent drawn at the point $P$ in the first quadrant meets the $y-$axis in $Q $ and the chord $ A'P$ meets the $y-$axis in $M.$ If $ 'O' $ is the origin then $OQ^2 - MQ^2$ equals to
What is the equation of the ellipse with foci $( \pm 2,\;0)$ and eccentricity $ = \frac{1}{2}$