दीर्घवृत्त में नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, उत्केंद्रता तथा नाभिलंब जीवा की लंबाई ज्ञात कीजिए
$\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$
The given equation is $\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$ or $\frac{x^{2}}{2^{2}}+\frac{y^{2}}{5^{2}}=1$
Here, the denominator of $\frac{y^{2}}{25}$ is greater than the denominator of $\frac{x^{2}}{4}$
Therefore, the major axis is along the $y-$ axis, while the minor axis is along the $x-$ axis.
On comparing the given equation with $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1,$ we obtain $b=2$ and $a=5$
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{25-4}=\sqrt{21}$
Therefore,
The coordinates of the foci are $(0, \sqrt{21})$ and $(0,-\sqrt{21})$
The coordinates of the vertices are $(0,\,5)$ and $(0,\,-5)$
Length of major axis $=2 a=10$
Length of minor axis $=2 b =4$
Eccentricity, $e=\frac{c}{a}=\frac{\sqrt{21}}{5}$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 4}{5}=\frac{8}{5}$
एक दीर्घवृत्त की नाभियों के बीच की दूरी, इसके नाभिलंब की लंबाई की आधी है, तो दीर्घवृत्त की उत्केंद्रता है
माना रेखा $y = mx$ तथा दीर्घवृत $2 x ^{2}+ y ^{2}=1$, प्रथम चतुर्थांश में स्थित एक बिंदु $P$ पर काटते हैं। यदि इस दीर्घवृत्त का $P$ पर अभिलंब, निर्देशांक अक्षों को क्रमशः $\left(-\frac{1}{3 \sqrt{2}}, 0\right)$ तथा $(0, \beta)$ पर मिलता है, तो $\beta$ का मान है
माना $E _{1}: \frac{ x ^{2}}{ a ^{2}}+\frac{ y ^{2}}{ b ^{2}}=1, a > b$ एक दीर्घवत्त है। माना $E _{2}$ एक और दीर्घवत्त है, जो $E _{1}$ के दीर्घ अक्ष के छोरों को स्पर्श करता है तथा $E_{2}$ की नाभियोँ, $E_{1}$ के लघु अक्ष के छोरों पर है। यदि $E _{1}$ तथा $E _{2}$ की उत्केन्द्रता बराबर है, तो उसका मान है -
यदि दीर्घवृत्त $\frac{x^{2}}{27}+\frac{y^{2}}{3}=1$ के एक बिंदु पर खींची गई स्पर्श रेखा, निर्देशांक अक्षों को $A$ तथा $B$ पर मिलती है तथा $O$ मूल बिंदु है, तो त्रिभुज $OAB$ का न्यूनतम क्षेत्रफल (वर्ग इकाइयों में) है
यदि एक दीर्घवृत्त की नाभिलम्ब जीवा के एक किनारे पर अभिलम्ब लघु अक्ष के एक शीर्ष से होकर जाता है, तो दीर्घवृत्त की उत्केन्द्रता $e$ सन्तुष्ट करती है