Let the tangent and normal at the point $(3 \sqrt{3}, 1)$ on the ellipse $\frac{x^2}{36}+\frac{y^2}{4}=1$ meet the $y$-axis at the points $A$ and $B$ respectively. Let the circle $C$ be drawn taking $A B$ as a diameter and the line $x =2 \sqrt{5}$ intersect $C$ at the points $P$ and $Q$. If the tangents at the points $P$ and $Q$ on the circle intersect at the point $(\alpha, \beta)$, then $\alpha^2-\beta^2$ is equal to

  • [JEE MAIN 2023]
  • A

    $\frac{314}{5}$

  • B

    $\frac{304}{5}$

  • C

    $60$

  • D

    $61$

Similar Questions

If the length of the major axis of an ellipse is three times the length of its minor axis, then its eccentricity is

If tangents are drawn from point $P(3\ sin\theta + 4\ cos\theta , 3\ cos\theta\ -\ 4\ sin\theta)$ , $\theta = \frac {\pi}{8}$ to the ellipse $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1$ then angle between the tangents is

Let $P \left(\frac{2 \sqrt{3}}{\sqrt{7}}, \frac{6}{\sqrt{7}}\right), Q , R$ and $S$ be four points on the ellipse $9 x^2+4 y^2=36$. Let $P Q$ and $RS$ be mutually perpendicular and pass through the origin. If $\frac{1}{( PQ )^2}+\frac{1}{( RS )^2}=\frac{ p }{ q }$, where $p$ and $q$ are coprime, then $p+q$ is equal to $.........$.

  • [JEE MAIN 2023]

An ellipse $\frac{\left(x-x_0\right)^2}{a^2}+\frac{\left(y-y_0\right)^2}{b^2}=1$, $a > b$, is tangent to both $x$ and $y$ axes and is placed in the first quadrant. Let $F_1$ and $F_2$ be two foci of the ellipse and $O$ be the origin with $OF _1 < OF _2$. Suppose the triangle $OF _1 F _2$ is an isosceles triangle with $\angle OF _1 F _2=120^{\circ}$. Then the eccentricity of the ellipse is

  • [KVPY 2021]

In the ellipse, minor axis is $8$ and eccentricity is $\frac{{\sqrt 5 }}{3}$. Then major axis is