The position of the point $(1, 3)$ with respect to the ellipse $4{x^2} + 9{y^2} - 16x - 54y + 61 = 0$
Outside the ellipse
On the ellipse
On the major axis
On the minor axis
Let an ellipse with centre $(1,0)$ and latus rectum of length $\frac{1}{2}$ have its major axis along $x$-axis. If its minor axis subtends an angle $60^{\circ}$ at the foci, then the square of the sum of the lengths of its minor and major axes is equal to $...........$.
Let $P(a\sec \theta ,\;b\tan \theta )$ and $Q(a\sec \varphi ,\;b\tan \varphi )$, where $\theta + \phi = \frac{\pi }{2}$, be two points on the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$. If $(h, k)$ is the point of intersection of the normals at $P$ and $Q$, then $k$ is equal to
The angle between the pair of tangents drawn to the ellipse $3{x^2} + 2{y^2} = 5$ from the point $(1, 2)$, is
The normal at a variable point $P$ on an ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}}= 1$ of eccentricity e meets the axes of the ellipse in $ Q$ and $R$ then the locus of the mid-point of $QR$ is a conic with an eccentricity $e' $ such that :
The area of the quadrilateral formed by the tangents at the end points of latus rectum to the ellipse $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1$, is .............. $\mathrm{sq. \,units}$