If the variable line $y = kx + 2h$ is tangent to an ellipse $2x^2 + 3y^2 = 6$ , then locus of $P(h, k)$ is a conic $C$ whose eccentricity equals

  • A

    $\frac{{\sqrt 5 }}{2}$

  • B

    $\frac{{\sqrt 7 }}{3}$

  • C

    $\frac{{\sqrt 7 }}{2}$

  • D

    $\sqrt {\frac{7}{3}} $

Similar Questions

If the minimum area of the triangle formed by a tangent to the ellipse $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{4 a^{2}}=1$ and the co-ordinate axis is $kab,$ then $\mathrm{k}$ is equal to ..... .

  • [JEE MAIN 2021]

The line, $ lx + my + n = 0$  will cut the ellipse $\frac{{{x^2}}}{{{a^2}}}$ $+$ $\frac{{{y^2}}}{{{b^2}}}$ $= 1 $ in points whose eccentric angles differ by $\pi /2$  if :

Let $P$ is any point on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ . $S_1$ and $S_2$ its foci then maximum area of $\Delta PS_1S_2$ is (in square units)

In the ellipse, minor axis is $8$ and eccentricity is $\frac{{\sqrt 5 }}{3}$. Then major axis is

If $ \tan\  \theta _1. tan \theta _2 $ $= -\frac{{{a^2}}}{{{b^2}}}$  then the chord joining two points $\theta _1 \& \theta _2$  on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}}$ $= 1$  will subtend a right angle at :