If the variable line $y = kx + 2h$ is tangent to an ellipse $2x^2 + 3y^2 = 6$ , then locus of $P(h, k)$ is a conic $C$ whose eccentricity equals
$\frac{{\sqrt 5 }}{2}$
$\frac{{\sqrt 7 }}{3}$
$\frac{{\sqrt 7 }}{2}$
$\sqrt {\frac{7}{3}} $
The line $lx + my + n = 0$is a normal to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, if
If the eccentricity of an ellipse be $1/\sqrt 2 $, then its latus rectum is equal to its
If the eccentricity of the two ellipse $\frac{{{x^2}}}{{169}} + \frac{{{y^2}}}{{25}} = 1$ and $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ are equal, then the value of $a/b$ is
In a group of $100$ persons $75$ speak English and $40$ speak Hindi. Each person speaks at least one of the two languages. If the number of persons, who speak only English is $\alpha$ and the number of persons who speak only Hindi is $\beta$, then the eccentricity of the ellipse $25\left(\beta^2 x^2+\alpha^2 y^2\right)=\alpha^2 \beta^2$ is $.......$
If $ \tan\ \theta _1. tan \theta _2 $ $= -\frac{{{a^2}}}{{{b^2}}}$ then the chord joining two points $\theta _1 \& \theta _2$ on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}}$ $= 1$ will subtend a right angle at :