10-2. Parabola, Ellipse, Hyperbola
medium

Find the equation of the hyperbola satisfying the give conditions : Vertices $(\pm 7,\,0)$,  $e=\frac{4}{3}$

A

$\frac{x^{2}}{49}-\frac{y^{2}}{343}=1$

B

$\frac{x^{2}}{49}-\frac{y^{2}}{343}=1$

C

$\frac{x^{2}}{49}-\frac{y^{2}}{343}=1$

D

$\frac{x^{2}}{49}-\frac{y^{2}}{343}=1$

Solution

Vertices $(\pm 7,\,0)$, $e=\frac{4}{3}$

Here, the vertices are on the $x-$ axis.

Therefore, the equation of the hyperbola is of the form $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

since the vertices are $(\pm 7,\,0),\,\,a =7$

It is given that $e=\frac{4}{3}$

$\therefore \frac{c}{a}=\frac{4}{3} \,\,\,\left[e=\frac{c}{a}\right]$

$\Rightarrow \frac{c}{7}=\frac{4}{3}$

$\Rightarrow c=\frac{28}{3}$

We know that $a^{2}+b^{2}=c^{2}$

$\therefore 7^{2}+b^{2}=\left(\frac{28}{3}\right)^{2}$

$\Rightarrow b^{2}=\frac{784}{9}-49$

$\Rightarrow b^{2}=\frac{784-441}{9}=\frac{343}{9}$

Thus, the equation of the hyperbola is $\frac{x^{2}}{49}-\frac{y^{2}}{343}=1$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.