प्रतिबंधों को संतुष्ट करते हुए अतिपरवलय का समीकरण ज्ञात कीजिए

शीर्ष $(\pm 7,0), e=\frac{4}{3}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Vertices $(\pm 7,\,0)$, $e=\frac{4}{3}$

Here, the vertices are on the $x-$ axis.

Therefore, the equation of the hyperbola is of the form $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

since the vertices are $(\pm 7,\,0),\,\,a =7$

It is given that $e=\frac{4}{3}$

$\therefore \frac{c}{a}=\frac{4}{3} \,\,\,\left[e=\frac{c}{a}\right]$

$\Rightarrow \frac{c}{7}=\frac{4}{3}$

$\Rightarrow c=\frac{28}{3}$

We know that $a^{2}+b^{2}=c^{2}$

$\therefore 7^{2}+b^{2}=\left(\frac{28}{3}\right)^{2}$

$\Rightarrow b^{2}=\frac{784}{9}-49$

$\Rightarrow b^{2}=\frac{784-441}{9}=\frac{343}{9}$

Thus, the equation of the hyperbola is $\frac{x^{2}}{49}-\frac{y^{2}}{343}=1$

Similar Questions

समकोणीय अतिपरवलय $xy = {c^2}$ की नाभियों के निर्देशांक हैं  

माना कि $H: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$, जहाँ $a>b>0, x y$ - समतल (plane) में एक ऐसा अतिपरवलय (hyperbola) है जिसका संयुग्मी अक्ष (conjugate axis) $L M$ उसके एक शीर्ष (vertex) $N$ पर $60^{\circ}$ का कोण (angle) अंतरित (subtend) करता है। माना कि त्रिभुज (triangle) $L M N$ का क्षेत्रफल (area) $4 \sqrt{3}$ है।

सूची - $I$ सूची - $II$
$P$ $H$ के संयुग्मी अक्ष की लम्बाई है $1$ $8$
$Q$ $H$ की उत्केन्द्रता (eccentricity) है $2$ ${\frac{4}{\sqrt{3}}}$
$R$ $H$ की नाभियों (foci) के बीच की दूरी है $3$ ${\frac{2}{\sqrt{3}}}$
$S$ $H$ के नाभिलम्ब जीवा (latus rectum) की लम्बाई है $4$ $4$

दिए हुए विकल्पों मे से सही विकल्प है:

  • [IIT 2018]

माना एक रेखा $L : 2 x + y = k , k >0$, अतिपरवलय $x ^{2}- y ^{2}=3$ को स्पर्श करती है। यदि रेखा $L$, परवलय, $y ^{2}=\alpha x$ को भी स्पर्श करती है, तो $\alpha$ बराबर है -

  • [JEE MAIN 2021]

निम्नलिखित अतिपरवलयों के शीर्षों और नाभियों के निर्देशांकों, उत्केंद्रता और नाभिलंब जीवा की लंबाई ज्ञात कीजिए।

$\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$

यदि एक अतिपरवलय की नाभियाँ, दीर्घवृत्त $\frac{x^2}{9}+\frac{y^2}{25}=1$ की नाभियों के समान हैं तथा अतिपरवलय की उत्केन्द्रता, दीर्घवृत्त की उत्केन्द्रता का $\frac{15}{8}$ गुना है, तो अतिपरवलय पर बिन्दु $\left(\sqrt{2}, \frac{14}{3} \sqrt{\frac{2}{5}}\right)$ की छोटी नाभीय दूरी बराबर है

  • [JEE MAIN 2024]