Find the equation of the hyperbola satisfying the give conditions: Foci $(0, \,\pm \sqrt{10}),$ passing through $(2,\,3)$
Foci $(0,\, \pm \sqrt{10}),$ passing through $(2,\,3)$
Here, the foci are on the $y-$ axis.
Therefore, the equation of the hyperbola is of the form $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$
since the foci are $(0,\,\pm \sqrt{10})$, $c=\sqrt{10}$
We know that $a^{2}+b^{2}=c^{2}$
$\therefore a^{2}+b^{2}=10$
$\Rightarrow b^{2}=10-a^{2}$ ......... $(1)$
since the hyperbola passes through point $(2,\,3)$
$\frac{9}{a^{2}}-\frac{4}{b^{2}}=1$ ......... $(2)$
From equations $(1)$ and $(2)$, we obtain
$\frac{9}{a^{2}}-\frac{4}{(10-a)^{2}}=1$
$\Rightarrow 9\left(10-a^{2}\right)-4 a^{2}=a^{2}\left(10-a^{2}\right)$
$\Rightarrow 90-9 a^{2}-4 a^{2}=10 a^{2}-a^{2}$
$\Rightarrow a^{2}-23 a^{2}+90=0$
$\Rightarrow a^{4}-18 a^{2}-5 a^{2}+90=0$
$\Rightarrow a^{2}\left(a^{2}-18\right)-5\left(a^{2}-18\right)=0$
$\Rightarrow\left(a^{2}-18\right)-\left(a^{2}-5\right)=0$
$\Rightarrow a^{2}=18$ or $5$
In hyperbola, $c > a,$ i.e., $c^{2} > a^{2}$
$\therefore a^{2}=5$
$\Rightarrow b^{2}=10-a^{2}=10-5=5$
Thus, the equation of the hyperbola is $\frac{y^{2}}{5}-\frac{x^{2}}{5}=1$
A hyperbola passes through the foci of the ellipse $\frac{ x ^{2}}{25}+\frac{ y ^{2}}{16}=1$ and its transverse and conjugate axes coincide with major and minor axes of the ellipse, respectively. If the product of their eccentricities in one, then the equation of the hyperbola is ...... .
Let $P$ is a point on hyperbola $x^2 -y^2 = 4$ , which is at minimum distance from $(0,-1)$ then distance of $P$ from $x-$ axis is
Let the eccentricity of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ be $\frac{5}{4}$. If the equation of the normal at the point $\left(\frac{8}{\sqrt{5}}, \frac{12}{5}\right)$ on the hyperbola is $8 \sqrt{5} x +\beta y =\lambda$, then $\lambda-\beta$ is equal to
Let the foci of a hyperbola $\mathrm{H}$ coincide with the foci of the ellipse $E: \frac{(x-1)^2}{100}+\frac{(y-1)^2}{75}=1$ and the eccentricity of the hyperbola $\mathrm{H}$ be the reciprocal of the eccentricity of the ellipse $E$. If the length of the transverse axis of $\mathrm{H}$ is $\alpha$ and the length of its conjugate axis is $\beta$, then $3 \alpha^2+2 \beta^2$ is equal to :
The line $2 \mathrm{x}+\mathrm{y}=1$ is tangent to the hyperbola $\frac{\mathrm{x}^2}{\mathrm{a}^2}-\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1$. If this line passes through the point of intersection of the nearest directrix and the $\mathrm{x}$-axis, then the eccentricity of the hyperbola is