Find the equation of the hyperbola satisfying the give conditions: Foci $(0, \,\pm \sqrt{10}),$ passing through $(2,\,3)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Foci $(0,\, \pm \sqrt{10}),$ passing through $(2,\,3)$

Here, the foci are on the $y-$ axis.

Therefore, the equation of the hyperbola is of the form $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$

since the foci are $(0,\,\pm \sqrt{10})$,  $c=\sqrt{10}$

We know that $a^{2}+b^{2}=c^{2}$

$\therefore a^{2}+b^{2}=10$

$\Rightarrow b^{2}=10-a^{2}$         ......... $(1)$

since the hyperbola passes through point $(2,\,3)$ 

$\frac{9}{a^{2}}-\frac{4}{b^{2}}=1$         ......... $(2)$

From equations $(1)$ and $(2)$, we obtain

$\frac{9}{a^{2}}-\frac{4}{(10-a)^{2}}=1$

$\Rightarrow 9\left(10-a^{2}\right)-4 a^{2}=a^{2}\left(10-a^{2}\right)$

$\Rightarrow 90-9 a^{2}-4 a^{2}=10 a^{2}-a^{2}$

$\Rightarrow a^{2}-23 a^{2}+90=0$

$\Rightarrow a^{4}-18 a^{2}-5 a^{2}+90=0$

$\Rightarrow a^{2}\left(a^{2}-18\right)-5\left(a^{2}-18\right)=0$

$\Rightarrow\left(a^{2}-18\right)-\left(a^{2}-5\right)=0$

$\Rightarrow a^{2}=18$ or $5$

In hyperbola, $c > a,$ i.e., $c^{2} > a^{2}$

$\therefore a^{2}=5$

$\Rightarrow b^{2}=10-a^{2}=10-5=5$

Thus, the equation of the hyperbola is $\frac{y^{2}}{5}-\frac{x^{2}}{5}=1$

Similar Questions

A hyperbola passes through the foci of the ellipse $\frac{ x ^{2}}{25}+\frac{ y ^{2}}{16}=1$ and its transverse and conjugate axes coincide with major and minor axes of the ellipse, respectively. If the product of their eccentricities in one, then the equation of the hyperbola is ...... .

  • [JEE MAIN 2021]

Let $P$ is a point on hyperbola $x^2 -y^2 = 4$ , which is at minimum distance from $(0,-1)$ then distance of $P$ from $x-$ axis is

Let the eccentricity of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ be $\frac{5}{4}$. If the equation of the normal at the point $\left(\frac{8}{\sqrt{5}}, \frac{12}{5}\right)$ on the hyperbola is $8 \sqrt{5} x +\beta y =\lambda$, then $\lambda-\beta$ is equal to

  • [JEE MAIN 2022]

Let the foci of a hyperbola $\mathrm{H}$ coincide with the foci of the ellipse $E: \frac{(x-1)^2}{100}+\frac{(y-1)^2}{75}=1$ and the eccentricity of the hyperbola $\mathrm{H}$ be the reciprocal of the eccentricity of the ellipse $E$. If the length of the transverse axis of $\mathrm{H}$ is $\alpha$ and the length of its conjugate axis is $\beta$, then $3 \alpha^2+2 \beta^2$ is equal to :

  • [JEE MAIN 2024]

The line $2 \mathrm{x}+\mathrm{y}=1$ is tangent to the hyperbola $\frac{\mathrm{x}^2}{\mathrm{a}^2}-\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1$. If this line passes through the point of intersection of the nearest directrix and the $\mathrm{x}$-axis, then the eccentricity of the hyperbola is

  • [IIT 2010]