The foci of the ellipse $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{{b^2}}} = 1$ and the hyperbola $\frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{81}} = \frac{1}{{25}}$ coincide. Then the value of $b^2$ is -
$9$
$1$
$5$
$7$
The locus of a point $P (h, k)$ such that the line $y = hx + k$ is tangent to $4x^2 - 3y^2 = 1$ , is a/an
The equation of the hyperbola in the standard form (with transverse axis along the $x$ - axis) having the length of the latus rectum = $9$ units and eccentricity = $5/4$ is
Circles are drawn on chords of the rectangular hyperbola $ xy = c^2$ parallel to the line $ y = x $ as diameters. All such circles pass through two fixed points whose co-ordinates are :
At the point of intersection of the rectangular hyperbola $ xy = c^2 $ and the parabola $y^2 = 4ax$ tangents to the rectangular hyperbola and the parabola make an angle $ \theta $ and $ \phi $ respectively with the axis of $X$, then
The equation of the tangents to the hyperbola $3{x^2} - 4{y^2} = 12$ which cuts equal intercepts from the axes, are