- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
normal
The foci of the ellipse $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{{b^2}}} = 1$ and the hyperbola $\frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{81}} = \frac{1}{{25}}$ coincide. Then the value of $b^2$ is -
A
$9$
B
$1$
C
$5$
D
$7$
Solution
For hyperbola, $\mathrm{e}^{2}=\frac{1+\mathrm{b}^{2}}{\mathrm{a}^{2}}$
$\mathrm{e}^{2}=1+\frac{81}{144}=\frac{225}{144} \Rightarrow \mathrm{e}=\frac{15}{12}=\frac{5}{4}$
and $a^{2}=\frac{144}{25}$
Foci are $(\pm \text { ae }, 0) \equiv(\pm 3,0)$
Now for ellipse ae $=3 \Rightarrow \mathrm{a}^{2} \mathrm{e}^{2}=9$
and $b^{2}=a^{2}\left(1-e^{2}\right)$
$\quad b^{2}=a^{2}-a^{2} e^{2}$
$\Rightarrow b^{2}=16-9=7$
Standard 11
Mathematics