The distance between the directrices of the hyperbola $x = 8\sec \theta ,\;\;y = 8\tan \theta $ is
$16\sqrt 2 $
$\sqrt 2 $
$8\sqrt 2 $
$4\sqrt 2 $
The equation of the common tangent to the curves $y^2 = 8x$ and $xy = -1$ is
If the eccentricity of the standard hyperbola passing, through the point $(4, 6)$ is $2$, then the equation of the tangent to the hyperbola at $(4, 6)$ is
If the tangents drawn to the hyperbola $4y^2 = x^2 + 1$ intersect the co-ordinate axes at the distinct points $A$ and $B$, then the locus of the mid point of $AB$ is
If $\frac{{{{\left( {3x - 4y - z} \right)}^2}}}{{100}} - {\frac{{\left( {4x + 3y - 1} \right)}}{{225}}^2} = 1$ then
length of latusrectum of hyperbola is
The number of possible tangents which can be drawn to the curve $4x^2 - 9y^2 = 36$ , which are perpendicular to the straight line $5x + 2y -10 = 0$ is