Find the equation of the hyperbola satisfying the give conditions: Vertices $(0,\,\pm 5),$ foci $(0,\,±8)$
Vertices $(0,\,\pm 5),$ foci $(0,\,±8) $
Here, the vertices are on the $y-$ axis.
Therefore, the equation of the hyperbola is of the form $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$
since the vertices are $(0,\,\pm 5), \,\,a=5$
since the foci are $(0,\,\pm 8),\,\, c=8$
We know that $a^{2}+b^{2}=c^{2}$
$\therefore $ $5^{2}+b^{2}=8^{2}$
$b^{2}=64-25=39$
Thus, the equation of the hyperbola is $\frac{y^{2}}{25}-\frac{x^{2}}{39}=1$
The circle $x^2+y^2-8 x=0$ and hyperbola $\frac{x^2}{9}-\frac{y^2}{4}=1$ intersect at the points $A$ and $B$
$2.$ Equation of a common tangent with positive slope to the circle as well as to the hyperbola is
$(A)$ $2 x-\sqrt{5} y-20=0$ $(B)$ $2 x-\sqrt{5} y+4=0$
$(C)$ $3 x-4 y+8=0$ $(D)$ $4 x-3 y+4=0$
$2.$ Equation of the circle with $\mathrm{AB}$ as its diameter is
$(A)$ $x^2+y^2-12 x+24=0$ $(B)$ $x^2+y^2+12 x+24=0$
$(C)$ $\mathrm{x}^2+\mathrm{y}^2+24 \mathrm{x}-12=0$ $(D)$ $x^2+y^2-24 x-12=0$
Give hte answer question $1, 2$
The equation of the normal at the point $(a\sec \theta ,\;b\tan \theta )$ of the curve ${b^2}{x^2} - {a^2}{y^2} = {a^2}{b^2}$ is
If a hyperbola has length of its conjugate axis equal to $5$ and the distance between its foci is $13$, then the eccentricity of the hyperbola is
Tangents are drawn to the hyperbola $4{x^2} - {y^2} = 36$ at the points $P$ and $Q.$ If these tangents intersect at the point $T(0,3)$ then the area (in sq. units) of $\Delta PTQ$ is :
If the line $y = 2x + \lambda $ be a tangent to the hyperbola $36{x^2} - 25{y^2} = 3600$, then $\lambda = $