આપેલ શરતોનું પાલન કરતાં અતિવલયનું સમીકરણ મેળવો :  શિરોબિંદુઓ $(0,\,\pm 5),$ નાભિઓ $(0,\,±8)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Vertices $(0,\,\pm 5),$ foci $(0,\,±8) $

Here, the vertices are on the $y-$ axis.

Therefore, the equation of the hyperbola is of the form $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$

since the vertices are $(0,\,\pm 5), \,\,a=5$

since the foci are $(0,\,\pm 8),\,\, c=8$

We know that $a^{2}+b^{2}=c^{2}$

$\therefore $ $5^{2}+b^{2}=8^{2}$

$b^{2}=64-25=39$

Thus, the equation of the hyperbola is $\frac{y^{2}}{25}-\frac{x^{2}}{39}=1$

Similar Questions

જો અતિવલય $4y^2 = x^2 + 1$ પરના સ્પર્શકો યામાક્ષોને ભિન્ન બિંદુઓ  $A$ અને $B$ માં છેદે છે તો રેખા $AB$ ના મધ્યબિંદુનો બિંદુપથ મેળવો 

  • [JEE MAIN 2018]

એક ઉપવલય $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ એ અતિવલય $H: \frac{x^{2}}{49}-\frac{y^{2}}{64}=-1$ નાં શિરોબિંદુઓમાંથી પસાર થાય છે. ધારોક ઉપવલય $E$ ની પ્રધાન અને ગૌણ અક્ષો, અતિવલય $H$ ની અનુક્રમે મુખ્ય અને અનુબદ્ધ અક્ષો સાથે સંપાતિ છે. ધારો કે $E$ અને $H$ ની ઉત્કેન્દ્રતાઓનો ગુણાકાર $\frac{1}{2}$ છે. જો ઉપવલય $E$ ના નાભિલંબની લંબાઈ $l$ હોય, તો $113 l$ નું મૂલ્ય ............. છે.

  • [JEE MAIN 2022]

અતિવલય $H : x ^{2}-2 y ^{2}=4$ આપેલ છે. જો બિંદુ $P (4, \sqrt{6})$ આગળનો સ્પર્શક $x$ -અક્ષને બિંદુ $Q$ અને નાભીલંભને  બિંદુ $R \left( x _{1}, y _{1}\right), x _{1}>0 $ આગળ છેદે છે. જો $F$ એ $H$ ની બિંદુ $P$ થી નજીકની નાભી હોય તો  $\Delta QFR$ નું ક્ષેત્રફળ મેળવો.

  • [JEE MAIN 2021]

જો અતિવલયનો નાભિલંબ 8 અને ઉત્કેન્દ્રતા $\frac{3}{{\sqrt 5 }}$હોય, તો અતિવલયનું સમીકરણ.....

જો $P$ $(3\, sec\,\theta , 2\, tan\,\theta )$ અને $Q\, (3\, sec\,\phi , 2\, tan\,\phi )$ જ્યાં $\theta + \phi \, = \frac{\pi}{2}$ એ અતિવલય $\frac{{{x^2}}}{9} - \frac{{{y^2}}}{4} = 1$ ના ભિન્ન બિંદુઓ હોય તો $P$ અને $Q$ ને લંબ હોય તેવી રેખાનો છેદબિંદુના યામ મેળવો. 

  • [JEE MAIN 2014]