Find the middle terms in the expansion of $\left(\frac{x}{3}+9 y\right)^{10}$
It is known that in the expansion of $(a+b)^{n},$ in $n$ is even, then the middle term is $\left(\frac{n}{2}+1\right)^{th}$ term
Therefore, the middle term in the expansion of $\left(\frac{x}{3}+9 y\right)^{10}$ is $\left(\frac{10}{2}+1\right)^{th}=6^{th}$
$ = \frac{{7 \cdot 6 \cdot 5 \cdot 4!}}{{4! \cdot 3 \cdot 2}} \cdot \frac{{{3^3}}}{{{2^4} \cdot {3^4}}} \cdot {x^{12}} = \frac{{35}}{{48}}{x^{12}}{T_4} = {T_{5 + 1}} = {\,^{10}}{C_5}{\left( {\frac{x}{3}} \right)^{10 - 5}}{(9y)^5} = \frac{{10!}}{{515!}} \cdot \frac{{{x^5}}}{{{3^5}}} \cdot {9^5} \cdot {y^5}$
$ = \frac{{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6.5!}}{{5 \cdot 4 \cdot 3 \cdot 2.5!}} \cdot \frac{1}{{{3^5}}} \cdot {3^{10}} \cdot {x^5}{y^5}$ $\left[9^{5}=\left(3^{2}\right)^{5}=3^{10}\right]$
$ = 252 \times {3^5} \cdot {x^5} \cdot {y^5} = 6123{x^5}{y^5}$
Thus, the middle term in the expansion of $\left(\frac{x}{3}+9 y\right)^{10}$ is $61236 x^{5} y^{5}$
If for positive integers $r > 1,n > 2$ the coefficient of the ${(3r)^{th}}$ and ${(r + 2)^{th}}$ powers of $x$ in the expansion of ${(1 + x)^{2n}}$ are equal, then
The coefficient of the middle term in the binomial expansion in powers of $x$ of $(1 + \alpha x)^4$ and of $(1 - \alpha x)^6$ is the same if $\alpha$ equals
The number of integral terms in the expansion of ${\left( {\sqrt 3 + \sqrt[8]{5}} \right)^{256}}$ is
The coefficient of the term independent of $x$ in the expansion of $(1 + x + 2x^3)$ ${\left( {\frac{3}{2}{x^2} - \frac{1}{{3x}}} \right)^9}$ is
Find $a$ if the $17^{\text {th }}$ and $18^{\text {th }}$ terms of the expansion ${(2 + a)^{{\rm{50 }}}}$ are equal.