Find the middle terms in the expansion of $\left(\frac{x}{3}+9 y\right)^{10}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is known that in the expansion of $(a+b)^{n},$ in $n$ is even, then the middle term is $\left(\frac{n}{2}+1\right)^{th}$ term

Therefore, the middle term in the expansion of $\left(\frac{x}{3}+9 y\right)^{10}$ is $\left(\frac{10}{2}+1\right)^{th}=6^{th}$

$ = \frac{{7 \cdot 6 \cdot 5 \cdot 4!}}{{4! \cdot 3 \cdot 2}} \cdot \frac{{{3^3}}}{{{2^4} \cdot {3^4}}} \cdot {x^{12}} = \frac{{35}}{{48}}{x^{12}}{T_4} = {T_{5 + 1}} = {\,^{10}}{C_5}{\left( {\frac{x}{3}} \right)^{10 - 5}}{(9y)^5} = \frac{{10!}}{{515!}} \cdot \frac{{{x^5}}}{{{3^5}}} \cdot {9^5} \cdot {y^5}$

$ = \frac{{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6.5!}}{{5 \cdot 4 \cdot 3 \cdot 2.5!}} \cdot \frac{1}{{{3^5}}} \cdot {3^{10}} \cdot {x^5}{y^5}$            $\left[9^{5}=\left(3^{2}\right)^{5}=3^{10}\right]$

$ = 252 \times {3^5} \cdot {x^5} \cdot {y^5} = 6123{x^5}{y^5}$

Thus, the middle term in the expansion of $\left(\frac{x}{3}+9 y\right)^{10}$ is $61236 x^{5} y^{5}$

Similar Questions

Find $a$ if the $17^{\text {th }}$ and $18^{\text {th }}$ terms of the expansion ${(2 + a)^{{\rm{50 }}}}$ are equal.

If $a$ and $b$ are distinct integers, prove that $a-b$ is a factor of $a^{n}-b^{n}$, whenever $n$ is a positive integer.

In the expansion of ${(1 + x + {x^3} + {x^4})^{10}},$ the coefficient of ${x^4}$ is

The expression $[x + (x^3-1)^{1/2}]^5 + [x - (x^3-1)^{1/2}]^5$ is a polynomial of degree :

Let the sixth term in the binomial expansion of $\left(\sqrt{2^{\log _2}\left(10-3^x\right)}+\sqrt[5]{2^{(x-2) \log _2 3}}\right)^m$, in the increasing powers of $2^{(x-2) \log _2 3}$, be $21$ . If the binomial coefficients of the second, third and fourth terms in the expansion are respectively the first, third and fifth terms of an $A.P.$, then the sum of the squares of all possible values of $x$ is $.........$.

  • [JEE MAIN 2023]