The term independent of $x$ in expansion of ${\left( {\frac{{x + 1}}{{{x^{2/3}} - {x^{\frac{1}{3}}} + 1\;}}--\frac{{x - 1}}{{x - {x^{1/2}}}}} \right)^{10}}$ is

  • [JEE MAIN 2013]
  • A

    $4$

  • B

    $120$

  • C

    $210$

  • D

    $310$

Similar Questions

Let the coefficients of $x ^{-1}$ and $x ^{-3}$ in the expansion of $\left(2 x^{\frac{1}{5}}-\frac{1}{x^{\frac{1}{5}}}\right)^{15}, x>0$, be $m$ and $n$ respectively. If $r$ is a positive integer such $m n^{2}={ }^{15} C _{ r } .2^{ r }$, then the value of $r$ is equal to

  • [JEE MAIN 2022]

If the constant term in the binomial expansion of $\left(\sqrt{x}-\frac{k}{x^{2}}\right)^{10}$ is $405,$ then $|k|$ equals 

  • [JEE MAIN 2020]

If coefficients of ${(2r + 1)^{th}}$ term and ${(r + 2)^{th}}$ term are equal in the expansion of ${(1 + x)^{43}},$ then the value of $r$ will be

The term independent of $' x '$ in the expansion of ${\left( {9\,x\,\, - \,\,\frac{1}{{3\,\sqrt x }}} \right)^{18}}, x > 0$ , is $\alpha$ times the corresponding binomial co-efficient . Then $' \alpha '$ is :

Evaluate $(\sqrt{3}+\sqrt{2})^{6}-(\sqrt{3}-\sqrt{2})^{6}$