Find the modulus and the argument of the complex number $z=-1-i \sqrt{3}$.
$z=-1-i \sqrt{3}$
Let $r \cos \theta=-1$ and $r \sin \theta=-\sqrt{3}$
On squaring and adding, we obtain
$(r \cos \theta)^{2}+(r \sin \theta)^{2}=(-1)^{2}+(-\sqrt{3})^{2}$
$\Rightarrow r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+3$
$\Rightarrow r^{2}=4 \quad\left[\cos ^{2} \theta+\sin ^{2} \theta=1\right]$
$\Rightarrow r=\sqrt{4}=2 \quad[\text { Conventionally }, r>0]$
$\therefore$ Modulus $=2$
$\therefore 2 \cos \theta=-1$ and $2 \sin \theta=-\sqrt{3}$
$\Rightarrow \cos \theta=\frac{-1}{2}$ and $\sin \theta=\frac{-\sqrt{3}}{2}$
since both the values of $\sin \theta$ and $\cos \theta$ negative and $\sin \theta$ and $\cos \theta$ are negative in $III$ quadrant,
Argument $=-\left(\pi-\frac{\pi}{3}\right)=\frac{-2 \pi}{3}$
Thus, the modulus and argument of the complex number $-1-\sqrt{3} i$ are $2$ and $-\frac{2 \pi}{3}$ respectively.
The conjugate of a complex number is $\frac{1}{{i - 1}}$ then that complex number is
If $\bar z$ be the conjugate of the complex number $z$, then which of the following relations is false
The real value of $\theta$ for which the expression $\frac{{1 + i\,\cos \theta }}{{1 - 2i\cos \theta }}$ is a real number is $\left( {n \in I} \right)$
If $z$ is a complex number such that $\frac{{z - 1}}{{z + 1}}$ is purely imaginary, then
If a complex number $z$ statisfies the equation $x + \sqrt 2 \,\,\left| {z + 1} \right|\,+ \,i\, = \,0,$ then $\left| z \right|$ is equal to