Find the modulus and the argument of the complex number $z=-1-i \sqrt{3}$.
$z=-1-i \sqrt{3}$
Let $r \cos \theta=-1$ and $r \sin \theta=-\sqrt{3}$
On squaring and adding, we obtain
$(r \cos \theta)^{2}+(r \sin \theta)^{2}=(-1)^{2}+(-\sqrt{3})^{2}$
$\Rightarrow r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+3$
$\Rightarrow r^{2}=4 \quad\left[\cos ^{2} \theta+\sin ^{2} \theta=1\right]$
$\Rightarrow r=\sqrt{4}=2 \quad[\text { Conventionally }, r>0]$
$\therefore$ Modulus $=2$
$\therefore 2 \cos \theta=-1$ and $2 \sin \theta=-\sqrt{3}$
$\Rightarrow \cos \theta=\frac{-1}{2}$ and $\sin \theta=\frac{-\sqrt{3}}{2}$
since both the values of $\sin \theta$ and $\cos \theta$ negative and $\sin \theta$ and $\cos \theta$ are negative in $III$ quadrant,
Argument $=-\left(\pi-\frac{\pi}{3}\right)=\frac{-2 \pi}{3}$
Thus, the modulus and argument of the complex number $-1-\sqrt{3} i$ are $2$ and $-\frac{2 \pi}{3}$ respectively.
If $z_1$ is a point on $z\bar{z} = 1$ and $z_2$ is another point on $(4 -3i)z + (4 + 3i)z -15 = 0$, then $|z_1 -z_2|_{min}$ is (where $ i = \sqrt { - 1}$ )
Find the modulus of $\frac{1+i}{1-i}-\frac{1-i}{1+i}$
If for $z=\alpha+i \beta,|z+2|=z+4(1+i)$, then $\alpha+\beta$ and $\alpha \beta$ are the roots of the equation
If $|{z_1}|\, = \,|{z_2}|$ and $amp\,{z_1} + amp\,\,{z_2} = 0$, then
For any two complex numbers ${z_1},{z_2}$we have $|{z_1} + {z_2}{|^2} = $ $|{z_1}{|^2} + |{z_2}{|^2}$ then