If ${z_1}$ and ${z_2}$ are two non-zero complex numbers such that $|{z_1} + {z_2}| = |{z_1}| + |{z_2}|,$then arg $({z_1}) - $arg $({z_2})$ is equal to

  • [AIEEE 2005]
  • [IIT 1979]
  • [IIT 1987]
  • A

    $ - \pi $

  • B

    $ - \frac{\pi }{2}$

  • C

    $\frac{\pi }{2}$

  • D

    $0$

Similar Questions

If $z = 3 + 5i,\,\,{\rm{then }}\,{z^3} + \bar z + 198 = $

If ${z_1}{\rm{ and }}{z_2}$ be complex numbers such that ${z_1} \ne {z_2}$ and $|{z_1}|\, = \,|{z_2}|$. If ${z_1}$ has positive real part and ${z_2}$ has negative imaginary part, then $\frac{{({z_1} + {z_2})}}{{({z_1} - {z_2})}}$may be

  • [IIT 1986]

The conjugate of a complex number is $\frac{1}{{i - 1}}$ then that complex number is

  • [AIEEE 2008]

If $\frac{{z - \alpha }}{{z + \alpha }}\left( {\alpha  \in R} \right)$ is a purely imaginary number and $\left| z \right| = 2$, then a value of $\alpha $ is

  • [JEE MAIN 2019]

If $z$ is a complex number, then $(\overline {{z^{ - 1}}} )(\overline z ) = $