If ${z_1}$ and ${z_2}$ are two non-zero complex numbers such that $|{z_1} + {z_2}| = |{z_1}| + |{z_2}|,$then arg $({z_1}) - $arg $({z_2})$ is equal to
$ - \pi $
$ - \frac{\pi }{2}$
$\frac{\pi }{2}$
$0$
If $z = 3 + 5i,\,\,{\rm{then }}\,{z^3} + \bar z + 198 = $
If ${z_1}{\rm{ and }}{z_2}$ be complex numbers such that ${z_1} \ne {z_2}$ and $|{z_1}|\, = \,|{z_2}|$. If ${z_1}$ has positive real part and ${z_2}$ has negative imaginary part, then $\frac{{({z_1} + {z_2})}}{{({z_1} - {z_2})}}$may be
The conjugate of a complex number is $\frac{1}{{i - 1}}$ then that complex number is
If $\frac{{z - \alpha }}{{z + \alpha }}\left( {\alpha \in R} \right)$ is a purely imaginary number and $\left| z \right| = 2$, then a value of $\alpha $ is
If $z$ is a complex number, then $(\overline {{z^{ - 1}}} )(\overline z ) = $