If $z$ is a purely real number such that ${\mathop{\rm Re}\nolimits} (z) < 0$, then $arg(z)$ is equal to
$\pi $
$\frac{\pi }{2}$
$0$
$ - \frac{\pi }{2}$
If ${z_1},{z_2},{z_3}$ are complex numbers such that $|{z_1}|\, = \,|{z_2}|\, = $ $\,|{z_3}|\, = $ $\left| {\frac{1}{{{z_1}}} + \frac{1}{{{z_2}}} + \frac{1}{{{z_3}}}} \right| = 1\,,$ then${\rm{ }}|{z_1} + {z_2} + {z_3}|$ is
If $\alpha$ denotes the number of solutions of $|1-i|^x=2^x$ and $\beta=\left(\frac{|z|}{\arg (z)}\right)$, where $z=\frac{\pi}{4}(1+i)^4\left(\frac{1-\sqrt{\pi i}}{\sqrt{\pi}+i}+\frac{\sqrt{\pi}-i}{1+\sqrt{\pi} \mathrm{i}}\right), i=\sqrt{-1}$, then the distance of the point $(\alpha, \beta)$ from the line $4 x-3 y=7$ is
The value of $|z - 5|$if $z = x + iy$, is
If $z$ is a complex number such that ${z^2} = {(\bar z)^2},$ then
Find the number of non-zero integral solutions of the equation $|1-i|^{x}=2^{x}$