If $z$ is a purely real number such that ${\mathop{\rm Re}\nolimits} (z) < 0$, then $arg(z)$ is equal to
$\pi $
$\frac{\pi }{2}$
$0$
$ - \frac{\pi }{2}$
Let $z$, $w \in C$ satisfy ${z^2} + \bar w = z$ and ${w^2} + \bar z = w$ then number of ordered pairs of complex numbers $(z, w)$ is equal to
The set of all $\alpha \in R$, for which $w = \frac{{1 + \left( {1 - 8\alpha } \right)z}}{{1 - z}}$ is a purely imaginary number, for all $z \in C$ satisfying $\left| z \right| = 1$ and ${\mathop{\rm Re}\nolimits} \,z \ne 1$, is
If $z$ is a complex number, then $(\overline {{z^{ - 1}}} )(\overline z ) = $
If ${z_1}$ and ${z_2}$ are two non-zero complex numbers such that $|{z_1} + {z_2}| = |{z_1}| + |{z_2}|,$then arg $({z_1}) - $arg $({z_2})$ is equal to
Argument and modulus of $\frac{{1 + i}}{{1 - i}}$ are respectively