1.Set Theory
medium

समान समुच्चयों के युग्म छाँटिए, यदि ऐसा कोई युग्म है, और कारण भी बतलाइए

$A =\{0\}, \quad B =\{x: x>15$ और $x<5\}$

$C =\{x: x-5=0\}, \quad D =\left\{x: x^{2}=25\right\}$

$E =\left\{x: x\right.$ समीकरण $x^{2}-2 x-15=0$ का एक धन पूर्णांक मूल है $\} .$

Option A
Option B
Option C
Option D

Solution

Since $0 \in A$ and $0$ does not belong to any of the sets $B, C, D$ and $E,$ it follows that, $A \neq B, A \neq C, A \neq D, A \neq E.$

Since $B =\phi$ but none of the other sets are empty. Therefore $B \neq C , B \neq D$ and $B \neq E$. Also $C =\{5\}$ but $-5 \in D$, hence $C \neq D$.

Since $E =\{5\}, C = E .$ Further, $D =\{-5,5\}$ and $E =\{5\},$ we find that, $D \neq E$

Thus, the only pair of equal sets is $C$ and $E .$

Standard 11
Mathematics

Similar Questions