Find the sum to indicated number of terms in each of the geometric progressions in $\left.x^{3}, x^{5}, x^{7}, \ldots n \text { terms (if } x \neq\pm 1\right)$
The given $G.P.$ is $x^{3}, x^{5}, x^{7} \ldots .$
Here, $a=x^{3}$ and $r=x^{2}$
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}=\frac{x^{3}\left[1-\left(x^{2}\right)^{n}\right]}{1-x^{2}}=\frac{x^{3}\left(1-x^{2 n}\right)}{1-x^{2}}$
Let $a_1, a_2, a_3, \ldots .$. be a sequence of positive integers in arithmetic progression with common difference $2$. Also, let $b_1, b_2, b_3, \ldots .$. be a sequence of positive integers in geometric progression with common ratio $2$ . If $a_1=b_1=c$, then the number of all possible values of $c$, for which the equality
$2\left(a_1+a_2+\ldots .+a_n\right)=b_1+b_2+\ldots . .+b_n$
holds for some positive integer $n$, is. . . . . . .
If ${x_r} = \cos (\pi /{3^r}) - i\sin (\pi /{3^r}),$ (where $i = \sqrt{-1}),$ then value of $x_1.x_2.x_3......\infty ,$ is :-
Find the $12^{\text {th }}$ term of a $G.P.$ whose $8^{\text {th }}$ term is $192$ and the common ratio is $2$
The sum of first two terms of a $G.P.$ is $1$ and every term of this series is twice of its previous term, then the first term will be
For a sequence $ < {a_n} > ,\;{a_1} = 2$ and $\frac{{{a_{n + 1}}}}{{{a_n}}} = \frac{1}{3}$. Then $\sum\limits_{r = 1}^{20} {{a_r}} $ is