गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।
$x^{3}, x^{5}, x^{7}, \ldots n$ पदों तक $($ यदि $x \neq\pm 1)$
The given $G.P.$ is $x^{3}, x^{5}, x^{7} \ldots .$
Here, $a=x^{3}$ and $r=x^{2}$
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}=\frac{x^{3}\left[1-\left(x^{2}\right)^{n}\right]}{1-x^{2}}=\frac{x^{3}\left(1-x^{2 n}\right)}{1-x^{2}}$
किसी गुणोत्तर श्रेणी के पद धनात्मक हैं। यदि प्रत्येक पद उसके बाद आने वाले दो पदों के योग के बराबर है, तो सार्वनिष्पत्ति होगी
यदि $a,\,b,\,c$ गुणोत्तर श्रेणी में हों, तो
एक अनुक्रम $ < {a_n} > \;$ के लिये ${a_1} = 2$ तथा $\frac{{{a_{n + 1}}}}{{{a_n}}} = \frac{1}{3}$, तब $\sum\limits_{r = 1}^{20} {{a_r}} $ है
माना $a$ तथा $b$ दो भिन्न धनात्मक वास्तविक संख्याएं हैं। माना एक $GP$, जिसका पहला पद $\mathrm{a}$ तथा तीसरा पद $\mathrm{b}$ है, का $11$ वाँ पद, एक अन्य $GP$, जिसका पहला $\mathrm{a}$ तथा पाचवाँ पद $\mathrm{b}$ है, के $\mathrm{p}$ वें पद के बराबर है। तो $\mathrm{p}$ बराबर है
मान लीजिए कि त्रिभुज $A B C$ की भुजाएँ $a, b, c$ हैं, एवं वह $b^2=a c$ को संतुष्ट करती हैं। तब $\frac{\sin A \cot C+\cos A}{\sin B \cot C+\cos B}$ के सभी संभावित मानों का समुच्चय क्या होगा ?