Let $a_1, a_2, a_3, \ldots$. be a $GP$ of increasing positive numbers. If the product of fourth and sixth terms is $9$ and the sum of fifth and seventh terms is $24 ,$ then $a_1 a_9+a_2 a_4 a_9+a_5+a_7$ is equal to $.........$.
$600$
$606$
$60$
$6$
For a sequence $ < {a_n} > ,\;{a_1} = 2$ and $\frac{{{a_{n + 1}}}}{{{a_n}}} = \frac{1}{3}$. Then $\sum\limits_{r = 1}^{20} {{a_r}} $ is
if $x = \,\frac{4}{3}\, - \,\frac{{4x}}{9}\, + \,\,\frac{{4{x^2}}}{{27}}\, - \,\,.....\,\infty $ , then $x$ is equal to
If $b$ is the first term of an infinite $G.P$ whose sum is five, then $b$ lies in the interval
If the ratio of the sum of first three terms and the sum of first six terms of a $G.P.$ be $125 : 152$, then the common ratio r is
The difference between the fourth term and the first term of a Geometrical Progresssion is $52.$ If the sum of its first three terms is $26,$ then the sum of the first six terms of the progression is