Find the value of $k$, if $x = 2$, $y = 1$ is a solution of the equation $2x + 3y = k$.
$1$
$3$
$7$
$0$
From the choices given below, choose the equation whose graphs are given in Fig. $(i)$ and Fig. $(ii)$.
For Fig. $(i)$ For Fig. $(ii)$
$(a)$ $y=x$ $(a)$ $y=x+2$
$(b)$ $x+y=0$ $(b)$ $y=x-2$
$(c)$ $y=2 x$ $(c)$ $y=-x+2$
$(d)$ $2+3 y=7 x$ $(d)$ $x+2 y=6$
Express the following linear equations in the form $ax + by + c = 0$ and indicate the values of $a$, $b$ and $c$ in each case : $-2 x+3 y=6$
For each of the graphs given in Fig. select the equation whose graph it is from the choices given below :
$(a)$ For Fig. $(i)$,
$(i)$ $x+y=0$ $(ii)$ $y=2 x$ $(iii)$ $y=x$ $(iv)$ $y=2 x+1$
$(b)$ For Fig. $(ii)$,
$(i)$ $x+y=0$ $(ii)$ $y=2 x$ $(iii)$ $y=2x+4$ $(iv)$ $y=x-4$
$(c)$ For Fig. $(iii)$,
$(i)$ $x+y=0$ $(ii)$ $y=2 x$ $(iii)$ $y=2x+1$ $(iv)$ $y=2 x-4$
Express the following linear equations in the form $ax + by + c = 0$ and indicate the values of $a$, $b$ and $c$ in each case : $2 x=-\,5 y$
Check the solutions of the equation $x -2y = 4$ and which are not : $(\sqrt{2},\, 4 \sqrt{2})$