2. Polynomials
medium

$k$ का मान ज्ञात कीजिए जबकि निम्नलिखित स्थितियों में से प्रत्येक स्थिति में $(x-1), p(x)$ का एक गुणनखंड हो

$p(x)=k x^{2}-\sqrt{2} x+1$

A

$-\sqrt{2}+1$

B

$\sqrt{2}-1$

C

$\sqrt{2}+1$

D

$-\sqrt{2}-1$

Solution

Here  $p ( x )= kx ^{2}-\sqrt{2} x +1$ and $g ( x )= x -1$

$\therefore$ For $( x -1)$ be a factor of $p ( x ), p (1)$ should be equal to $0 .$

since $\quad p (1)= k (1)^{2}-\sqrt{2}(1)+1 \quad$ or $p (1)= k -\sqrt{2}+1$

or $\quad \quad p(1)=k-\sqrt{2}+1 \quad \therefore k-\sqrt{2}+1=0$

$\Rightarrow \quad k =\sqrt{2}-1$

Standard 9
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.