Find the variance of the following data: $6,8,10,12,14,16,18,20,22,24$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

From the given data we can form the following Table The mean is calculated by step-deviation method taking $14$ as assumed mean. The number of observations is $n=10$

${x_i}$ ${d_i} = \frac{{{x_i} - 14}}{2}$

Deviations orom mean 

$\left( {{x_i} - \bar x} \right)$

$\left( {{x_i} - \bar x} \right)$
$6$ $-4$ $-9$ $81$
$8$ $-3$ $-7$ $49$
$10$ $-2$ $-5$ $25$
$12$ $-1$ $-3$ $9$
$14$ $0$ $-1$ $1$
$16$ $1$ $1$ $1$
$18$ $2$ $3$ $9$
$20$ $3$ $5$ $25$
$22$ $4$ $7$ $49$
$24$ $5$ $9$ $81$
  $5$   $330$

Therefore    $Mean\,\,\bar x = $ assumed mean $ + \frac{{\sum\limits_{i = 1}^n {{d_i}} }}{n} \times h$

$ = 14 + \frac{5}{{10}} \times 2 = 15$

and    Veriance $\left( {{\sigma ^2}} \right) = \frac{1}{n}\sum\limits_{i = 1}^{10} {{{\left( {{x_i} - \bar x} \right)}^2} = \frac{1}{{10}} \times 330 = 33} $

Thus Standard deviation $\left( \sigma  \right) = \sqrt {33}  = 5.74$

Similar Questions

The following values are calculated in respect of heights and weights of the students of a section of Class $\mathrm{XI}:$

  Height Weight
Mean $162.6\,cm$ $52.36\,kg$
Variance $127.69\,c{m^2}$ $23.1361\,k{g^2}$

Can we say that the weights show greater variation than the heights?

The mean and standard deviation of some data for the time taken to complete . a test are calculated with the following results:

Number of observations $=25,$ mean $=18.2$ seconds, standard deviation $=3.25 s$

Further, another set of 15 observations $x_{1}, x_{2}, \ldots, x_{15},$ also in seconds, is now available and we have $\sum_{i=1}^{15} x_{i}=279$ and $\sum_{i=1}^{15} x_{i}^{2}=5524 .$ Calculate the standard deviation based on all 40 observations.

If the variance of observations ${x_1},\,{x_2},\,......{x_n}$ is ${\sigma ^2}$, then the variance of $a{x_1},\,a{x_2}.......,\,a{x_n}$, $\alpha \ne 0$ is

Find the mean and variance for the first $n$ natural numbers

Let the mean and variance of $8$ numbers $x , y , 10$, $12,6,12,4,8$, be $9$ and $9.25$ respectively. If $x > y$, then $3 x-2 y$ is equal to $...........$.

  • [JEE MAIN 2023]