In a series of $2n$ observations half of them equals $a$ and remaining half equals $-a$. If the standard deviation of observations is $2$ then $\left| a \right|$ equals
$2$
$\sqrt 2$
$\frac{1}{n}$
$\frac{{\sqrt 2 }}{n}$
If each observation of a raw data whose variance is ${\sigma ^2}$, is multiplied by $\lambda$, then the variance of the new set is
If $x_1, x_2,.....x_n$ are $n$ observations such that $\sum\limits_{i = 1}^n {x_i^2} = 400$ and $\sum\limits_{i = 1}^n {{x_i}} = 100$ , then possible value of $n$ among the following is
Let $ \bar x , M$ and $\sigma^2$ be respectively the mean, mode and variance of $n$ observations $x_1 , x_2,...,x_n$ and $d_i\, = - x_i - a, i\, = 1, 2, .... , n$, where $a$ is any number.
Statement $I$: Variance of $d_1, d_2,.....d_n$ is $\sigma^2$.
Statement $II$ : Mean and mode of $d_1 , d_2, .... d_n$ are $-\bar x -a$ and $- M - a$, respectively
If for a distribution $\Sigma(x-5)=3, \Sigma(x-5)^{2}=43$ and the total number of item is $18,$ find the mean and standard deviation.
If the standard deviation of $0, 1, 2, 3, …..,9$ is $K$, then the standard deviation of $10, 11, 12, 13 …..19$ is