For a chemical reaction $A + B \rightarrow$ Product, the order is $1$ with respect to $A$ and $B$.
Rate $mol\,L^{-1}\,s^{-1}$ | $[A]$ $mol\,L^{-1}$ | $[B]$ $mol\,L^{-1}$ |
$0.10$ | $20$ | $0.5$ |
$0.40$ | $x$ | $0.5$ |
$0.80$ | $40$ | $y$ |
What is the value of $x$ and $y ?$
$80$ and $2$
$40$ and $4$
$160$ and $4$
$80$ and $4$
The reaction that occurs in a breath analyser, a device used to determine the alcohol level in a person's blood stream is
$2 \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+8 \mathrm{H}_{2} \mathrm{SO}_{4}+3 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O} \rightarrow 2 \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+$
$3 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+2 \mathrm{~K}_{2} \mathrm{SO}_{4}+11 \mathrm{H}_{2} \mathrm{O}$
If the rate of appearance of $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is $2.67 \,\mathrm{~mol}$ $\min ^{-1}$ at a particular time, the rate of disappearance of $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ at the same time is ...... $\mathrm{mol}\, \mathrm{min}^{-1}$ (Nearest integer)
The experimental data for the reaction $2A + {B_2} \to 2AB$ isThe rate equation for the above data is
Exp. |
$[A]_0$ |
$[B]_0$ |
Rate (mole $s^{-1}$) |
$(1)$ |
$0.50$ |
$0.50$ |
$1.6 \times {10^{ - 4}}$ |
$(2)$ |
$0.50$ |
$1.00$ |
$3.2 \times {10^{ - 4}}$ |
$(3)$ |
$1.00$ |
$1.00$ |
$3.2 \times {10^4}$ |
Order of a reaction is decided by
For reaction $2A + B \to $ products, the active mass of $ B $ is kept constant and that of $A$ is doubled. The rate of reaction will then
Consider the kinetic data given in the following table for the reaction $A + B + C \rightarrow$ Product.
Experiment No. | $\begin{array}{c}{[ A ]} \\ \left( mol dm ^{-3}\right)\end{array}$ | $\begin{array}{c}{[ B ]} \\ \left( mol dm ^{-3}\right)\end{array}$ | $\begin{array}{c}{[ C]} \\ \left( mol dm ^{-3}\right)\end{array}$ | Rate of reaction $\left( mol dm ^{-3} s ^{-1}\right)$ |
$1$ | $0.2$ | $0.1$ | $0.1$ | $6.0 \times 10^{-5}$ |
$2$ | $0.2$ | $0.2$ | $0.1$ | $6.0 \times 10^{-5}$ |
$3$ | $0.2$ | $0.1$ | $0.2$ | $1.2 \times 10^{-4}$ |
$4$ | $0.3$ | $0.1$ | $0.1$ | $9.0 \times 10^{-5}$ |
The rate of the reaction for $[ A ]=0.15 mol dm ^{-3},[ B ]=0.25 mol dm ^{-3}$ and $[ C ]=0.15 mol dm ^{-3}$ is found to be $Y \times 10^{-5} mol dm d ^{-3} s ^{-1}$. The value of $Y$ i. . . . . . .