- Home
- Standard 11
- Mathematics
13.Statistics
normal
For a frequency distribution, standard deviation is computed by
A$\sigma = \frac{{\sum f(x - \bar x)}}{{\sum f}}$
B$\sigma = \frac{{\sqrt {\sum f{{(x - \bar x)}^2}} }}{{\sum f}}$
C$\sigma = \sqrt {\frac{{\sum f{{(x - \bar x)}^2}}}{{\sum f}}} $
D$\sigma = \sqrt {\frac{{\sum f(x - \bar x)}}{{\sum f}}} $
Solution
(c)It is obvious.
Standard 11
Mathematics
Similar Questions
Let $\mu$ be the mean and $\sigma$ be the standard deviation of the distribution
$X_i$ | $0$ | $1$ | $2$ | $3$ | $4$ | $5$ |
$f_i$ | $k+2$ | $2k$ | $K^{2}-1$ | $K^{2}-1$ | $K^{2}-1$ | $k-3$ |
where $\sum f_i=62$. if $[x]$ denotes the greatest integer $\leq x$, then $\left[\mu^2+\sigma^2\right]$ is equal $………$.
Find the mean and variance for the following frequency distribution.
Classes | $0-30$ | $30-60$ | $60-90$ | $90-120$ | $120-150$ | $50-180$ | $180-210$ |
$f_i$ | $2$ | $3$ | $5$ | $10$ | $3$ | $5$ | $2$ |
hard