- Home
- Standard 11
- Mathematics
13.Statistics
hard
The mean and variance of $5$ observations are $5$ and $8$ respectively. If $3$ observations are $1,3,5$, then the sum of cubes of the remaining two observations is
A
$1072$
B
$1792$
C
$1216$
D
$1456$
(JEE MAIN-2023)
Solution
$\frac{1+3+5+a+b}{5}=5$
$a+b=16 \ldots \ldots(1)$
$\sigma^2=\frac{\sum x_1^2}{5}-\left(\frac{\sum x}{5}\right)^2$ $8=\frac{1^2+3^2+5^2+a^2+b^2}{5}-25$
$a^2+b^2=130 \ldots \ldots(2)$
$b y(1),(2)$
$a=7, b=9$
Standard 11
Mathematics
Similar Questions
Consider the statistics of two sets of observations as follows :
Size | Mean | Variance | |
Observation $I$ | $10$ | $2$ | $2$ |
Observation $II$ | $n$ | $3$ | $1$ |
If the variance of the combined set of these two observations is $\frac{17}{9},$ then the value of $n$ is equal to ….. .
For the frequency distribution :
Variate $( x )$ | $x _{1}$ | $x _{1}$ | $x _{3} \ldots \ldots x _{15}$ |
Frequency $(f)$ | $f _{1}$ | $f _{1}$ | $f _{3} \ldots f _{15}$ |
where $0< x _{1}< x _{2}< x _{3}<\ldots .< x _{15}=10$ and
$\sum \limits_{i=1}^{15} f_{i}>0,$ the standard deviation cannot be