The mean and variance of $5$ observations are $5$ and $8$ respectively. If $3$ observations are $1,3,5$, then the sum of cubes of the remaining two observations is
$1072$
$1792$
$1216$
$1456$
Find the mean and variance of the frequency distribution given below:
$\begin{array}{|l|l|l|l|l|} \hline x & 1 \leq x<3 & 3 \leq x<5 & 5 \leq x<7 & 7 \leq x<10 \\ \hline f & 6 & 4 & 5 & 1 \\ \hline \end{array}$
The varience of data $1001, 1003, 1006, 1007, 1009, 1010$ is -
Calculate the mean, variance and standard deviation for the following distribution:
Class | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | $80-90$ | $90-100$ |
$f_i$ | $3$ | $7$ | $12$ | $15$ | $8$ | $3$ | $2$ |
Given that $\bar{x}$ is the mean and $\sigma^{2}$ is the variance of $n$ observations $x_{1}, x_{2}, \ldots, x_{n}$ Prove that the mean and variance of the observations $a x_{1}, a x_{2}, a x_{3}, \ldots ., a x_{n}$ are $a \bar{x}$ and $a^{2} \sigma^{2},$ respectively, $(a \neq 0)$
The variance of $10$ observations is $16$. If each observation is doubled, then standard deviation of new data will be -