For a given distribution of marks mean is $35.16$ and its standard deviation is $19.76$. The co-efficient of variation is..
$\frac{{35.16}}{{19.76}}$
$\frac{{19.76}}{{35.16}}$
$\frac{{35.16}}{{19.76}} \times 100$
$\frac{{19.76}}{{35.16}} \times 100$
Let $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{N}$ and $\mathrm{a}<\mathrm{b}<\mathrm{c}$. Let the mean, the mean deviation about the mean and the variance of the $5$ observations $9$,$25$, $a$, $b$, $c$ be $18$,$4$ and $\frac{136}{5}$, respectively. Then $2 \mathrm{a}+\mathrm{b}-\mathrm{c}$ is equal to ..............
Two sets each of 20 observations, have the same standard derivation 5. The first set has a mean 17 and the second a mean 22. Determine the standard deviation of the set obtained by combining the given two sets.
Let $ \bar x , M$ and $\sigma^2$ be respectively the mean, mode and variance of $n$ observations $x_1 , x_2,...,x_n$ and $d_i\, = - x_i - a, i\, = 1, 2, .... , n$, where $a$ is any number.
Statement $I$: Variance of $d_1, d_2,.....d_n$ is $\sigma^2$.
Statement $II$ : Mean and mode of $d_1 , d_2, .... d_n$ are $-\bar x -a$ and $- M - a$, respectively
The variance $\sigma^2$ of the data is $ . . . . . .$
$x_i$ | $0$ | $1$ | $5$ | $6$ | $10$ | $12$ | $17$ |
$f_i$ | $3$ | $2$ | $3$ | $2$ | $6$ | $3$ | $3$ |
The mean and standard deviation of $20$ observations are found to be $10$ and $2$ respectively. On rechecking, it was found that an observation $8$ was incorrect. Calculate the correct mean and standard deviation in each of the following cases:
If wrong item is omitted.