- Home
- Standard 11
- Mathematics
13.Statistics
hard
If the mean and variance of eight numbers $3,7,9,12,13,20, x$ and $y$ be $10$ and $25$ respectively, then $\mathrm{x} \cdot \mathrm{y}$ is equal to
A
$48$
B
$56$
C
$54$
D
$58$
(JEE MAIN-2020)
Solution
$\frac{3+7+9+12+13+20+x+y}{8}=10$
$x+y=16$
$\frac{\Sigma x^{2}}{n}-\left(\frac{\Sigma x}{n}\right)^{2}=25$
$3^{2}+7^{2}+9^{2}+12^{2}+13^{2}+20^{2}+\mathrm{x}^{2}+\mathrm{y}^{2}=1000$
$x^{2}+y^{2}=148$
$x y=54$
Standard 11
Mathematics
Similar Questions
For the frequency distribution :
Variate $( x )$ | $x _{1}$ | $x _{1}$ | $x _{3} \ldots \ldots x _{15}$ |
Frequency $(f)$ | $f _{1}$ | $f _{1}$ | $f _{3} \ldots f _{15}$ |
where $0< x _{1}< x _{2}< x _{3}<\ldots .< x _{15}=10$ and
$\sum \limits_{i=1}^{15} f_{i}>0,$ the standard deviation cannot be
Calculate the mean, variance and standard deviation for the following distribution:
Class | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | $80-90$ | $90-100$ |
$f_i$ | $3$ | $7$ | $12$ | $15$ | $8$ | $3$ | $2$ |
hard