किसी दिए गए तल के लिए ‘गॉस का नियम’ इस प्रकार लिखते हैं इससे हम यह निष्कर्ष निकाल सकते हैं कि
तल पर $E$, अवश्य ही शून्य है
तल के प्रत्येक बिन्दु पर $E$ तल के लम्बवत् है
तल से होकर सम्पूर्ण फ्लक्स, शून्य है
फ्लक्स, तल से होकर केवल बाहर जा रहा है
एक आवेश $Q\;\mu C$ को घन के केन्द्र पर रखा गया है। घन के प्रत्येक पृष्ठ से गुजरने वाला फ्लक्स है
निम्न चित्र में गॉसियन सतह $A$ द्वारा घेरे गये आवेशों के कारण इससे निर्गत फ्लक्स होगा (दिया है $q_1$ = $-14 \,nC$, $q_2$ = $78.85 \,nC$, $q_3$ = $-56 \,nC$)
${q_1},\;{q_2},\;{q_3}$ व ${q_4}$ बिन्दु आवेश चित्रानुसार स्थित हैं। $S$ एक $R$ त्रिज्या का गॉसीय पृष्ठ है। गॉस नियम के अनुसार निम्न में से क्या सही है
मूलबिन्दु पर अवस्थित $2 \times 10^{-9}\, m ^{3}$ के किसी वार्धिक आयतन में परिबद्ध कुल आवेश $......\,nC$ होगा, यदि इसके क्षेत्र का विधुत फ्लक्स घनत्व $D = e ^{- x } \sin y \hat{ i }- e ^{- x } \cos y \hat{ j }+2 z \hat{ k } C / m ^{2}$ पाया जाता है।
एक लम्बे बेलनाकार आयतन में एक समान आवेश घनत्व $\rho$ वितरित है। बेलनाकार आयतन की त्रिज्या $R$ है। एक आवेश कण $(q)$ बेलन के चारों तरफ वृत्ताकार पथ में घुमता है। आवेश कण की गतिज ऊर्जा है $....$