For a particle in uniform circular motion, the acceleration $\vec a$ at a point $P(R,\theta)$ on the circle of radius $R$ is (Here $\theta$ is measured from the $x-$ axis)

  • [AIEEE 2010]
  • [JEE MAIN 2022]
  • A

    $\frac{{{V^2}}}{R}\widehat i + \frac{{{V^2}}}{R}\widehat j$

  • B

    $ - \frac{{{V^2}}}{R}\cos \theta \widehat i + \frac{{{V^2}}}{R}\sin \theta \widehat j$

  • C

    $ - \frac{{{V^2}}}{R}\sin \theta \widehat i + \frac{{{V^2}}}{R}\cos \theta \widehat j$

  • D

    $ - \frac{{{V^2}}}{R}\cos \theta \widehat i - \frac{{{V^2}}}{R}\sin \theta \widehat j$

Similar Questions

Figure below shows a body of mass $M$ moving with the uniform speed on a circular path of radius, $R$. What is the change in acceleration in going from ${P_1}$ to ${P_2}$

An object moves at a constant speed along a circular path in a horizontal plane with centre at the origin. When the object is at $x =+2\,m$, its velocity is $-4 \hat{ j }\, m / s$. The object's velocity $(v)$ and acceleration $(a)$ at $x =-2\,m$ will be

  • [JEE MAIN 2023]

In uniform circular motion

The velocity and acceleration vectors of a particle undergoing circular motion are $\overrightarrow{ v }=2 \hat{ i } m / s$ and $\overrightarrow{ a }=2 \hat{ i }+4 \hat{ j } m / s ^2$ respectively at an instant of time. The radius of the circle is $........\,m$

$A \,10\, kg$ ball attached to the end of a rigid massless rod of length $1\, m$ rotates at constant speed in a horizontal circle of radius $0.5\, m$ and period $1.57 \, sec$ as in fig. The force exerted by rod on the ball is ........ $N$.