For a plane electromagnetic wave, the magnetic field at a point $x$ and time $t$ is
$\overrightarrow{ B }( x , t )=\left[1.2 \times 10^{-7} \sin \left(0.5 \times 10^{3} x +1.5 \times 10^{11} t \right) \hat{ k }\right] T$
The instantaneous electric field $\overrightarrow{ E }$ corresponding to $\overrightarrow{ B }$ is : (speed of light $\left.c=3 \times 10^{8} ms ^{-1}\right)$
$\overrightarrow{ E }( x , t )=\left[36 \sin \left(0.5 \times 10^{3} x +1.5 \times 10^{11} t \right) \hat{ k }\right] \frac{ v }{ m }$
$\overrightarrow{ E }( x , t )=\left[-36 \sin \left(0.5 \times 10^{3} x +1.5 \times 10^{11} t \right) \hat{ j }\right] \frac{ v }{ m }$
$\overrightarrow{ E }( x , t )=\left[-36 \sin \left(1 \times 10^{3} x +1.5 \times 10^{11} t \right) \hat{ j }\right] \frac{ v }{ m }$
$\overrightarrow{ E }( x , t )=\left[36 \sin \left(1 \times 10^{3} x +1.5 \times 10^{11} t \right) \hat{ j }\right] \frac{ v }{ m }$
Write equation of energy density of electromagnetic waves.
A charged particle oscillates about its mean equilibrium position with a frequency of $10^9\ Hz$. The electromagnetic waves produced:
Magnetic field in a plane electromagnetic wave is given by
$\vec B = {B_0}\,\sin \,\left( {kx + \omega t} \right)\hat jT$
Expression for corresponding electric field will be Where $c$ is speed of light
Electric field in a plane electromagnetic wave is given by ${E}=50 \sin \left(500 {x}-10 \times 10^{10} {t}\right) \,{V} / {m}$ The velocity of electromagnetic wave in this medium is :
(Given ${C}=$ speed of light in vacuum)
Calculate the electric and magnetic fields produced by the radiation coming from a $100\; W$ bulb at a distance of $3\; m$. Assume that the efficiency of the bulb is $2.5 \%$ and it is a point source.