For a projectile, the ratio of maximum height reached to the square of flight time is ($g = 10 ms^{-2}$)
$5:4$
$5:2$
$5:1$
$10:1$
The maximum height attained by a projectile is increased by $10\,\%$ by increasing its speed of projection, without changing the angle of projection. The percentage increases in the horizontal range will be $...........\,\%$
Column $-I$ Angle of projection |
Column $-II$ |
$A.$ $\theta \, = \,{45^o}$ | $1.$ $\frac{{{K_h}}}{{{K_i}}} = \frac{1}{4}$ |
$B.$ $\theta \, = \,{60^o}$ | $2.$ $\frac{{g{T^2}}}{R} = 8$ |
$C.$ $\theta \, = \,{30^o}$ | $3.$ $\frac{R}{H} = 4\sqrt 3 $ |
$D.$ $\theta \, = \,{\tan ^{ - 1}}\,4$ | $4.$ $\frac{R}{H} = 4$ |
$K_i :$ initial kinetic energy
$K_h :$ kinetic energy at the highest point
A particle is projected from the ground with velocity $u$ at angle $\theta$ with horizontal. The horizontal range, maximum height and time of flight are $R, H$ and $T$ respectively. They are given by $R = \frac{{{u^2}\sin 2\theta }}{g}$, $H = \frac{{{u^2}{{\sin }^2}\theta }}{{2g}}$ and $T = \frac{{2u\sin \theta }}{g}$ Now keeping $u $ as fixed, $\theta$ is varied from $30^o$ to $60^o$. Then,
A ball is thrown from the ground to clear a wall $3\,m$ high at a distance of $6\,m$ and falls $18\,m$ away from the wall, the angle of projection of ball is
A stone projected at an angle of $60^o$ from the ground level strikes at an angle of $30^o$ on the roof of a building of height $‘h= 30\,m ’$ . Find the speed of projection(in $m/s$ ) of the stone