If $\alpha+\beta+\gamma=2 \pi$, then the system of equations

$x+(\cos \gamma) y+(\cos \beta) z=0$

$(\cos \gamma) x+y+(\cos \alpha) z=0$

$(\cos \beta) x+(\cos \alpha) y+z=0$

has :

  • [JEE MAIN 2021]
  • A

    no solution

  • B

    infinitely many solution

  • C

    exactly two solutions

  • D

    a unique solution

Similar Questions

If $A \ne O$ and $B \ne O$ are $ n × n$ matrix such that $AB = O,$ then

Let $A=\left(\begin{array}{cc}4 & -2 \\ \alpha & \beta\end{array}\right)$ . If $A ^{2}+\gamma A +18 I = O$, then $\operatorname{det}( A )$ is equal to

  • [JEE MAIN 2022]

Let $d \in R$, and  $A = \left[ {\begin{array}{*{20}{c}} { - 2}&{4 + d}&{\left( {\sin \,\theta } \right) - 2}\\ 1&{\left( {\sin \,\theta } \right) + 2}&d\\ 5&{\left( {2\sin \,\theta } \right) - d}&{\left( { - \sin \,\theta } \right) + 2 + 2d} \end{array}} \right]$, $\theta  \in \left[ {0,2\pi } \right]$. If the minimum value of det $(A)$ is $8$, then a value of $d$ is

  • [JEE MAIN 2019]

For positive numbers $x,y$ and $z$  the numerical value of the determinant $\left| {\,\begin{array}{*{20}{c}}1&{{{\log }_x}y}&{{{\log }_x}z}\\{{{\log }_y}x}&1&{{{\log }_y}z}\\{{{\log }_z}x}&{{{\log }_z}y}&1\end{array}\,} \right|$is

  • [IIT 1993]

If $a \ne b \ne c,$ the value of $x$ which satisfies the equation $\left| {\,\begin{array}{*{20}{c}}0&{x - a}&{x - b}\\{x + a}&0&{x - c}\\{x + b}&{x + c}&0\end{array}\,} \right| = 0$, is