- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
easy
If $\omega $ is a cube root of unity and $\Delta = \left| {\begin{array}{*{20}{c}}1&{2\omega }\\\omega &{{\omega ^2}}\end{array}} \right|$, then ${\Delta ^2}$ is equal to
A
$ - \omega $
B
$\omega $
C
$1$
D
${\omega ^2}$
Solution
(b) Since $\Delta = {\omega ^2} – 2{\omega ^2} = – {\omega ^2}$.
Therefore ${\Delta ^2} = {\omega ^4} = \omega $.
Standard 12
Mathematics