8. Introduction to Trigonometry
medium

For acute angle $\theta,$ if $\cos \theta=\sin \theta,$ then $2 \tan ^{2} \theta+\sin ^{2} \theta+1=\ldots \ldots \ldots \ldots$

A

$\frac{5}{2}$

B

$\frac{7}{4}$

C

$\frac{5}{4}$

D

$\frac{7}{2}$

Solution

$\cos \theta=\sin \theta \quad \therefore \frac{\cos \theta}{\cos \theta}=\frac{\sin \theta}{\cos \theta} \quad \therefore 1=\tan \theta \quad \therefore \theta=45$

$2 \tan ^{2} \theta+\sin ^{2} \theta+1=2 \tan ^{2} 45+\sin ^{2} 45+1$

$=2(1)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+1$

$=2+\frac{1}{2}+1=3+\frac{1}{2}=\frac{7}{2}$

Standard 10
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.