For any complex number $w = c + id$, let $\arg ( w ) \in(-\pi, \pi]$, where $i =\sqrt{-1}$. Let $\alpha$ and $\beta$ be real numbers such that for all complex numbers $z=x+$ iy satisfying arg $\left(\frac{z+\alpha}{z+\beta}\right)=\frac{\pi}{4}$, the ordered pair $( x , y )$ lies on the circle

$x^2+y^2+5 x-3 y+4=0 .$

Then which of the following statements is (are) TRUE?

$(A)$ $\alpha=-1$  $(B)$ $\alpha \beta=4$   $(C)$ $\alpha \beta=-4$   $(D)$ $\beta=4$

  • [IIT 2021]
  • A

    $A,B$

  • B

    $A,C$

  • C

    $A,D$

  • D

    $B,D$

Similar Questions

Let $A =\left\{\theta \in(0,2 \pi): \frac{1+2 i \sin \theta}{1- i \sin \theta}\right.$ is purely imaginary $\}$. Then the sum of the elements in $A$ is

  • [JEE MAIN 2023]

Find the real numbers $x$ and $y$ if $(x-i y)(3+5 i)$ is the conjugate of $-6-24 i$

Let $S=\left\{z \in C : z^{2}+\bar{z}=0\right\}$. Then $\sum \limits_{z \in S}(\operatorname{Re}(z)+\operatorname{Im}(z))$ is equal to$......$

  • [JEE MAIN 2022]

Let $z$ satisfy $\left| z \right| = 1$ and $z = 1 - \vec z$.

Statement $1$ : $z$ is a real number

Statement $2$ : Principal argument of $z$ is $\frac{\pi }{3}$

  • [JEE MAIN 2013]

If $|z|\, = 1,(z \ne - 1)$and $z = x + iy,$then $\left( {\frac{{z - 1}}{{z + 1}}} \right)$ is