Gujarati
4-1.Complex numbers
medium

For any complex number $w = c + id$, let $\arg ( w ) \in(-\pi, \pi]$, where $i =\sqrt{-1}$. Let $\alpha$ and $\beta$ be real numbers such that for all complex numbers $z=x+$ iy satisfying arg $\left(\frac{z+\alpha}{z+\beta}\right)=\frac{\pi}{4}$, the ordered pair $( x , y )$ lies on the circle

$x^2+y^2+5 x-3 y+4=0 .$

Then which of the following statements is (are) TRUE?

$(A)$ $\alpha=-1$  $(B)$ $\alpha \beta=4$   $(C)$ $\alpha \beta=-4$   $(D)$ $\beta=4$

A

$A,B$

B

$A,C$

C

$A,D$

D

$B,D$

(IIT-2021)

Solution

$\arg \left(\frac{z+\alpha}{z+\beta}\right)=\frac{\pi}{4}$ implies $z$ is

on arc and $(-\alpha, 0) \&(-\beta, 0)$ subtend $\frac{\pi}{4}$ on $z$.

And $z$ lies on $x^2+y^2+5 x-3 y+4=0$

So put $y=0$;

$x^2+5 x+4=0 \Rightarrow x=-1 ; x=-4$

Now, $\arg \left(\frac{z+\alpha}{z+\beta}\right)=\frac{\pi}{4} \Rightarrow z+\alpha=(z+\beta)$. T. $e^{i \frac{\pi}{4}}$

So, $z+\beta=z+4 \Rightarrow \beta=4 \& z+\alpha=z+1 \Rightarrow \alpha=1$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.