- Home
- Standard 11
- Mathematics
4-1.Complex numbers
hard
Let $z =1+ i$ and $z _1=\frac{1+ i \overline{ z }}{\overline{ z }(1- z )+\frac{1}{ z }}$. Then $\frac{12}{\pi}$ $\arg \left(z_1\right)$ is equal to $..........$.
A
$18$
B
$27$
C
$36$
D
$9$
(JEE MAIN-2023)
Solution
$z=1+i$
$z_1=\frac{1+i \bar{z}}{\bar{z}(1-z)+\frac{1}{z}}$
$z_1=\frac{1+i(1-i)}{(1-i)(1-1-i)+\frac{1}{1+i}}$
$=\frac{1+i-i^2}{(1-i)(-i)+\frac{1-i}{2}}$
$=\frac{2+i}{-3 i-1}=\frac{4+2 i}{-3 i-1}$
$=\frac{-(4+2 i)(3 i-1)}{(3 i)^2-(1)^2}$
$\therefore \frac{12}{\pi} \arg \left(z_1\right)=\frac{12}{\pi} \times \frac{3 \pi}{4}=9$
Standard 11
Mathematics