Two point charges $ + 3\,\mu C$ and $ + 8\,\mu C$ repel each other with a force of $40\,N$. If a charge of $ - 5\,\mu C$ is added to each of them, then the force between them will become....$N$

  • A

    $ - 10$

  • B

    $ + 10$

  • C

    $ + 20$

  • D

    $ - 20$

Similar Questions

Coulomb's law for electrostatic force between two point charges and Newton's law for gravitational force between two stationary point masses, both have inverse-square dependence on the distance between the charges and masses respectively.

$(a)$ Compare the strength of these forces by determining the ratio of their magnitudes $(i)$ for an electron and a proton and $(ii)$ for two protons.

$(b)$ Estimate the accelerations of electron and proton due to the electrical force of their mutual attraction when they are $1  \mathring A \left( { = {{10}^{ - 10}}m} \right)$ apart? $\left(m_{p}=1.67 \times 10^{-27} \,kg , m_{e}=9.11 \times 10^{-31}\, kg \right)$

Two spheres $A$ and $B$ of radius $4\,cm$ and $6\,cm$ are given charges of $80\,\mu c$ and $40\,\mu c$ respectively. If they are connected by a fine wire, the amount of charge flowing from one to the other is

A point charge of $40$ stat coulomb is placed $2$ $cm$ in front of an earthed metallic plane plate of large size. Then the force of attraction on the point charge is.....$dynes$

When ${10^{14}}$ electrons are removed from a neutral metal sphere, the charge on the sphere becomes......$\mu C$

A point charge $q_1$ exerts an electric force on a second point charge $q_2$. If third charge $q_3$ is brought near, the electric force of $q_1$ exerted on $q_2$