बारंबारता बंटन
चर $( x )$ | $x _{1}$ | $x _{1}$ | $x _{3} \ldots \ldots x _{15}$ |
बारंबारता $(f)$ | $f _{1}$ | $f _{1}$ | $f _{3} \ldots f _{15}$ |
जहाँ $0 < x _{1} < x _{2} < x _{3} < \ldots < x _{15}=10$ तथा $\sum_{ i =1}^{15} f _{ i }>0$ है, का मानक विचलन, निम्न में से कौन-सा नहीं हो सकता ?
$2$
$1$
$4$
$6$
एक विद्यार्थी ने $100$ प्रेक्षणों का माध्य $40$ और मानक विचलन $5.1$ ज्ञात किया, जबकि उसने गलती से प्रेक्षण $40$ के स्थान पर $50$ ले लिया था। सही माध्य और मानक विचलन क्या है ?
निम्नलिखित बंटन के लिए माध्य, प्रसरण व मानक विचलन ज्ञात कीजिए
वर्ग | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | $80-90$ | $90-100$ |
बारंबारता | $3$ | $7$ | $12$ | $15$ | $8$ | $3$ | $2$ |
मान लीजिये की $n \geq 3$ एक प्राकृत संख्या है। दी गयी संख्याओं की सूची $x_1, x_2, \ldots, x_n$ का औसत तथा मानक विचलन क्रमानुसार $\mu$ और $\sigma$ है। एक नयीसंख्याओं की सूची $y_1, y_2, \ldots, y_n$ इस प्रकार बनाई जाती हैं कि $y_1=\frac{x_1+x_2}{2}, y_2=\frac{x_1+x_2}{2}$ और प्रत्येक $j=3,4, \ldots, n$ के लिए $y_j=x_j$ । यदि नयी सूची का औसत तथा मानक विचलन क्रमानुसार $\hat{\mu}$ और $\hat{\sigma}$ है तो निम्नलिखित में से कौन सा कथन आवश्यक रूप से सत्य है?
$20$ प्रेक्षणों के माध्य तथा मानक विचलन क्रमश: $10$ तथा $2.5$ निकाले गये। यह पाया गया कि गलती से एक आंकड़ा $35$ की जगह $25$ लिया गया था। यदि सही आकड़ों का माध्य तथा मानक विचलन क्रमशः $\alpha$ तथा $\sqrt{\beta}$ हैं, तो $(\alpha, \beta)$ है