- Home
- Standard 11
- Mathematics
तीन प्रेक्षणों $a , b$ तथा $c$ का विचार कीजिए, जिनके लिए $b = a + c$ है। यदि $a +2, b +2, c +2$ का मानक विचलन $d$ है, तो निम्न में से कौन सा सत्य है ?
$b^{2}=3\left(a^{2}+c^{2}\right)+9 d^{2}$
$b^{2}=a^{2}+c^{2}+3 d^{2}$
$b^{2}=3\left(a^{2}+c^{2}+d^{2}\right)$
$b ^{2}=3\left( a ^{2}+ c ^{2}\right)-9 d ^{2}$
Solution
For $a, b, c$
mean $=\frac{a+b+c}{3}(=\bar{x})$
$b = a + c$
$\Rightarrow \quad \bar{x}=\frac{2 b}{3}$ $…..(1)$
S.D. $(a+2, b+2, c+2)=$ S.D. $(a, b, c)=d$
$\Rightarrow \quad d ^{2}=\frac{ a ^{2}+ b ^{2}+ c ^{2}}{3}-(\overline{ x })^{2}$
$\Rightarrow \quad d^{2}=\frac{a^{2}+b^{2}+c^{2}}{3}-\frac{4 b^{2}}{9}$
$\Rightarrow 9 d^{2}=3\left(a^{2}+b^{2}+c^{2}\right)-4 b^{2}$
$\Rightarrow \quad b^{2}=3\left(a^{2}+c^{2}\right)-9 d^{2}$
Similar Questions
यदि बारंबारता बंटन
वर्ग : | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ |
बारंबारता | $2$ | $3$ | $x$ | $5$ | $4$ |
का माध्य $28$ है, तो इसका प्रसरण है____________.