For the function $f(x) = {e^x},a = 0,b = 1$, the value of $ c$ in mean value theorem will be

  • A

    $log \,x$

  • B

    $\log (e - 1)$

  • C

    $0$

  • D

    $1$

Similar Questions

If $(1 -x + 2x^2)^n$ = $a_0 + a_1x + a_2x^2+..... a_{2n}x^{2n}$ , $n \in N$ , $x \in R$ and $a_0$ , $a_2$ and $a_1$ are in $A$ . $P$ .,then there exists 

In the mean value theorem, $f(b) - f(a) = (b - a)f'(c)$if $a = 4$, $b = 9$ and $f(x) = \sqrt x $ then the value of  $c$  is

For the function$x + {1 \over x},x \in [1,\,3]$, the value of $ c$  for the mean value theorem is

Let $f$ and $g$ be real valued functions defined on interval $(-1,1)$ such that $g^{\prime \prime}(x)$ is continuous, $g(0) \neq 0, g^{\prime}(0)=0, g^{\prime \prime}(0) \neq$ 0 , and $f(x)=g(x) \sin x$.

$STATEMENT$ $-1: \lim _{x \rightarrow 0}[g(x) \cot x-g(0) \operatorname{cosec} x]=f^{\prime \prime}(0)$.and

$STATEMENT$ $-2: f^{\prime}(0)=g(0)$.

  • [IIT 2008]

The number of points, where the curve $y=x^5-20 x^3+50 x+2$ crosses the $x$-axis, is $............$.

  • [JEE MAIN 2023]