વિધેય $f(x) = {e^x},a = 0,b = 1$, તો મધ્યકમાન પ્રમેય મુજબ $c$ ની કિમત મેળવો.
$log \,x$
$\log (e - 1)$
$0$
$1$
જો $c = \frac {1}{2}$ અને $f(x) = 2x -x^2$ એ અંતરાલ $x$ પર મધ્યકમાન પ્રમેય પાલન કરે છે તો $x$ મેળવો.
$a = 1$ અને $b = 4$ લઈ વિધેય $f(x)=x^{2}-4 x-3$ માટે $[a, b]$ પર મધ્યકમાન પ્રમેય ચકાસો.
વક્ર $y=x^5-20 x^3+50 x+2$ એ $x$-અક્ષને કેટલી વાર ક્રોસ કરશે. ?
ચકાસો કે આપેલ વિધેયમાં રોલનું પ્રમેય લગાડી શકાય કે નહિ : $f(x)=[x],$ $x \in[-2,2]$
જો વિધેય $f(x) = {x^3} - 6{x^2} + ax + b$ એ અંતરાલ $[1,\,3]$ માં રોલનું પ્રમેય પાલન કરે છે અને $f'\left( {{{2\sqrt 3 + 1} \over {\sqrt 3 }}} \right) = 0$ તો $a =$ ..............