फलन $f(x) = {e^x},a = 0,b = 1$ के लिए मध्यमान प्रमेय में $c$ का मान होगा
$log\, x$
$\log (e - 1)$
$0$
$1$
यदि $f(x) = 2x - {x^2}$ के लिए अन्तराल $[0, 1]$ में लैगरांज प्रमेय सत्यापित है, तो $c$ का मान, जो कि $[0,\,1]$ में होगा, है
मध्यमान प्रमेय $\frac{{f(b) - f(a)}}{{b - a}} = f'(c)$ में, यदि $a = 0,b = \frac{1}{2}$ तथा $f(x) = x(x - 1)(x - 2)$ हो, तो $ c$ का मान है
फलन$f(x) = x(x + 3){e^{ - (1/2)x}}$ रोले प्रमेय की सभी शर्तों को $[-3, 0] $ में सन्तुष्ट करता है। $c$ का मान है
अन्तराल $\left( {0,\frac{\pi }{2}} \right)$ में फलन $f(x) = {e^{ - 2x}}$ $sin 2x $है। रोले प्रमेय के अनुसार एक वास्तविक संख्या $c \in \left( {0,\frac{\pi }{2}} \right)$ इस प्रकार है कि $f'\,(c) = 0$, तब
यदि फलन $f(x)=2 x^{3}+ a x^{2}+ b x$ के लिए अंतराल $[-1,1]$ में बिंदु $c =\frac{1}{2}$ पर रोले का प्रमेय लागू है, तो $2 a + b$ का मान है