3 and 4 .Determinants and Matrices
medium

$A$ तथा $B$ आव्युहों के लिए सत्यापित कीजिए कि $( AB )^{\prime}= B ^{\prime} A ^{\prime},$ जहाँ

$A =\left[\begin{array}{r}1 \\ -4 \\ 3\end{array}\right], B =\left[\begin{array}{lll}-1 & 2 & 1\end{array}\right]$

Option A
Option B
Option C
Option D

Solution

$A B=\left[\begin{array}{c}1 \\ -4 \\ 3\end{array}\right]\left[\begin{array}{lll}-1 & 2 & 1\end{array}\right]=\left[\begin{array}{ccc}-1 & 2 & 1 \\ 4 & -8 & -4 \\ -3 & 6 & 3\end{array}\right]$

$\therefore(A B)^{\prime}=\left[\begin{array}{ccc}-1 & 4 & -3 \\ 2 & -8 & 6 \\ 1 & -4 & 3\end{array}\right]$

Now, $A^{\prime}=\left[\begin{array}{lll}1 & -4 & 3\end{array}\right], B^{\prime}=\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right]$

$\therefore $  ${B^\prime }{A^\prime } = \left[ {\begin{array}{*{20}{l}}
  { – 1} \\ 
  2 \\ 
  1 
\end{array}} \right]\left[ {\begin{array}{*{20}{l}}
  1&{ – 4}&3 
\end{array}} \right]$ $ = \left[ {\begin{array}{*{20}{c}}
  { – 1}&4&{ – 3} \\ 
  2&{ – 8}&6 \\ 
  1&{ – 4}&3 
\end{array}} \right]$

Hence, we have verified $(A B)^{\prime}=B^{\prime} A^{\prime}$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.