- Home
- Standard 12
- Mathematics
નીચે આપેલા શ્રેણિક $\mathrm{A}$ અને $\mathrm{B}$ માટે ચકાસો કે $(\mathrm{A} \mathrm{B})^{\prime}=\mathrm{B}^{\prime} \mathrm{A}^{\prime}$ : $A=\left[\begin{array}{c}1 \\ -4 \\ 3\end{array}\right], B=\left[\begin{array}{lll}-1 & 2 & 1\end{array}\right]$.
Solution
$A B=\left[\begin{array}{c}1 \\ -4 \\ 3\end{array}\right]\left[\begin{array}{lll}-1 & 2 & 1\end{array}\right]=\left[\begin{array}{ccc}-1 & 2 & 1 \\ 4 & -8 & -4 \\ -3 & 6 & 3\end{array}\right]$
$\therefore(A B)^{\prime}=\left[\begin{array}{ccc}-1 & 4 & -3 \\ 2 & -8 & 6 \\ 1 & -4 & 3\end{array}\right]$
Now, $A^{\prime}=\left[\begin{array}{lll}1 & -4 & 3\end{array}\right], B^{\prime}=\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right]$
$\therefore $ ${B^\prime }{A^\prime } = \left[ {\begin{array}{*{20}{l}}
{ – 1} \\
2 \\
1
\end{array}} \right]\left[ {\begin{array}{*{20}{l}}
1&{ – 4}&3
\end{array}} \right]$ $ = \left[ {\begin{array}{*{20}{c}}
{ – 1}&4&{ – 3} \\
2&{ – 8}&6 \\
1&{ – 4}&3
\end{array}} \right]$
Hence, we have verified $(A B)^{\prime}=B^{\prime} A^{\prime}$.