- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
easy
आव्यूह $A =\left[\begin{array}{ll}1 & 5 \\ 6 & 7\end{array}\right]$ के लिए सत्यापित कीजिए कि
$\left( A + A ^{\prime}\right)$ एक सममित आव्यूह है।
Option A
Option B
Option C
Option D
Solution
Given : $A=\left[\begin{array}{ll}1 & 5 \\ 6 & 7\end{array}\right],$ then $A^{\prime}=\left[\begin{array}{ll}1 & 6 \\ 5 & 7\end{array}\right]$
$A+A^{\prime}=\left[\begin{array}{ll}1 & 5 \\ 6 & 7\end{array}\right]+\left[\begin{array}{ll}1 & 6 \\ 5 & 7\end{array}\right]=\left[\begin{array}{ll}2 & 11 \\ 11 & 14\end{array}\right]$
$\therefore $ $\left(A+A^{\prime}\right)^{\prime}=\left[\begin{array}{cc}2 & 11 \\ 11 & 14\end{array}\right]=A+A^{\prime}$
Hence, $(A+A^{\prime})$ is a symmetric matrix.
Standard 12
Mathematics