3 and 4 .Determinants and Matrices
easy

आव्यूह $A =\left[\begin{array}{ll}1 & 5 \\ 6 & 7\end{array}\right]$ के लिए सत्यापित कीजिए कि

$\left( A + A ^{\prime}\right)$ एक सममित आव्यूह है।

Option A
Option B
Option C
Option D

Solution

Given : $A=\left[\begin{array}{ll}1 & 5 \\ 6 & 7\end{array}\right],$ then $A^{\prime}=\left[\begin{array}{ll}1 & 6 \\ 5 & 7\end{array}\right]$

$A+A^{\prime}=\left[\begin{array}{ll}1 & 5 \\ 6 & 7\end{array}\right]+\left[\begin{array}{ll}1 & 6 \\ 5 & 7\end{array}\right]=\left[\begin{array}{ll}2 & 11 \\ 11 & 14\end{array}\right]$

$\therefore    $ $\left(A+A^{\prime}\right)^{\prime}=\left[\begin{array}{cc}2 & 11 \\ 11 & 14\end{array}\right]=A+A^{\prime}$

Hence, $(A+A^{\prime})$ is a symmetric matrix.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.